The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing ...The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.展开更多
The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the ...The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.展开更多
During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clear...During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.展开更多
The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. ...The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.展开更多
Blade strain distribution and its change with time are crucial for reliability analysis and residual life evaluation in blade vibration tests.Traditional strain measurements are achieved by strain gauges(SGs)in a cont...Blade strain distribution and its change with time are crucial for reliability analysis and residual life evaluation in blade vibration tests.Traditional strain measurements are achieved by strain gauges(SGs)in a contact manner at discrete positions on the blades.This study proposes a method of full-field and real-time strain reconstruction of an aero-engine blade based on limited displacement responses.Limited optical measured displacement responses are utilized to reconstruct the full-field strain.The full-field strain distribution is in-time visualized.A displacement-to-strain transformation matrix is derived on the basis of the blade mode shapes in the modal coordinate.The proposed method is validated on an aero-engine blade in numerical and experimental cases.Three discrete vibrational displacement responses measured by laser triangulation sensors are used to reconstruct the full-field strain over the whole operating time.The reconstructed strain responses are compared with the results measured by SGs and numerical simulation.The high consistency between the reconstructed and measured results demonstrates the accurate strain reconstructed by the method.This paper provides a low-cost,real-time,and visualized measurement of blade full-field dynamic strain using displacement response,where the traditional SGs would fail.展开更多
Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few stu...Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard.The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.Design/methodology/approach–In order to investigate the exceeding probability of the rail displacement under different seismic excitations,the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis(IDA)is proposed,and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined.Then a finite element model(FEM)of an assumed HSR track-bridge system is constructed,which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track.Under different seismic excitations,the seismic displacement response of the rail is calculated;the character of the rail displacement is analyzed;and the exceeding probability of the rail vertical displacement exceeding the allowable standard(2mm)is investigated.Findings–The results show that:(1)The bridge-abutment joint position may form a step-like under seismic excitation,threatening the running safety of high-speed trains under seismic excitations,and the rail displacements at mid-span positions are bigger than that at other positions on the bridge.(2)The exceeding probability of rail displacement is up to about 44%when PGA 50.01g,which is the level-five risk probability and can be described as’very likely to happen’.(3)The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge,and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.Originality/value–The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.展开更多
The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building c...The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building control systems. Up to then,time-history analyses were mandatory for isolated buildings and had to be specially approved by the Minster of the Ministry of Construction (MOC).Simplified design procedures based on the equivalent linear method for seismically isolated buildings have been issued as'Notification 2009-Structnral calculation procedure for buildings with seismic isolation'from MOC,and are now integrated into the Ministry of Land,Infrastructure,and Transportation (MLIT).Along with Notification 2009,'Notification 1446 of year 2000-Standard for specifications and test methods for seismic isolation devices'was also issued.Buildings with heights equal to or less than 60m and that are designed according to these Notifications,including base isolated buildings,only need approval from local building officials,and no longer require the special approval of the Minister of MLIT.This paper summarizes:1) some statistics related to buildings with seismic isolation completed up to the end of 2001; 2) simplified design procedures required by Notification 2009 of year 2000;and 3) performance of seismic isolation devices required by Notification 1446 of year 2000.展开更多
The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new ...The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new statistical approach is developed to determine the key parameters of such an equivalent linear system over a 2D space of period and damping ratio. The new optimization criterion realizes the consideration of the structural safety margin in the equivalent linearization method when applied to the performance-based seismic design/evaluation of engineering structures. As an application, equations for equivalent system parameters of both bilinear hysteretic and stiffness degrading single-degree-of- freedom systems are deduced with the assumption of a constant ductility ratio. Error analyses are also performed to validate the proposed approach.展开更多
Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bear...Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.展开更多
Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of ...Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper.Firstly,four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions,respectively.These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities.Finally,three displacement responses of the bridge deck under four different independent variables ofβin the exponential function and four modulation functions were compared,respectively.Results show that the turbulence intensities using two non-uniform modulation functions(NMF)are larger than those using uniform modulation functions(uMF).Moreover,the root mean square(RMS)values of three displacement responses increase with the decrease ofβ.Besides,the RMS values of three displacement under two NMFs are larger than those under two uMFs,and their RMS values under the second uMF are the smallest.展开更多
Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in...Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.展开更多
基金National Natural Science Foundation of China under Grant No.52108453Natural Science Foundation of Jiangxi Province of China under Grant No.20212BAB214014+1 种基金National Key R&D Program of China under Grant No.2018YFC1504305Joint Funds of the National Natural Science Foundation of China under Grant No.U1839201。
文摘The response displacement method(RDM)is recommended for the seismic analysis of underground structures in the transverse direction for many codes,including bases for design of structures-seismic actions for designing geotechnical works(ISO 23469)and code for seismic design of urban rail transit structures(GB 50909-2014).However,there are some obvious limitations in the application of RDM.Springs and the shear stress of the soil could be approximately evaluated for the structures having a simple cross section,such as rectangular and circular structures.It is necessary to propose simplified seismic analysis methods for structures with complex cross sections.This paper refers to the idea of RDM and proposes three generalized response displacement methods(GRDM).In GRDM1,a part of the soil surrounding a structure is selected to generate a generalized underground structure with a rectangular cross section,and the same analysis model as RDM is applied to analyze the responses of the structure.In GRDM2,a hollow soil model without a generalized structure is used to compute the equivalent load caused by the relative displacement of the soil,and the soil-structure interaction model is applied to calculate the responses of the structure.In GRDM3,a continuous soil model is applied to compute the equivalent load caused by the relative displacement and shear stress of the soil,and the soil-structure interaction model is applied to analyze the responses of the structure,which is the same as the model used in GRDM2.The time-history analysis method(THAM)is used to evaluate the accuracy of the proposed simplified methods.Results show that the error of GRDM1 is about 20%,while the error is only 5%for GRDM2 and GRDM3.Among the three proposed methods,GRDM3 has obvious advantages regarding calculation efficiency and accuracy.Therefore,it is recommended to use GRDM3 for the seismic response analysis of underground structures that have conventional simple or complex cross sections.
基金National Natural Science foundation of China,Grant number 59895410
文摘The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.
基金Supported by the National Natural Science Foundation of China(No.52075468)。
文摘During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.
基金Funded by the National Natural Science Foundation of China(Nos.51108237 and 51178112)
文摘The micro-mechanical response of asphalt mixtures was studied using the discrete element method. The discrete element sample of stone mastic asphalt was generated first and the vehicle load was applied to the sample. A user-written program was coded with the FISH language in PFC3 D to extract the contact forces within the sample and the displacements of the particles. Then, the contact forces within the whole sample, in asphalt mastic, in coarse aggregates and between asphalt mastic and coarse aggregates were investigated. Finally, the movement of the particles in the sample was analyzed. The sample was divided into 15 areas and a figure was drawn to show how the balls move in each area according to the displacements of the balls in each area. The displacements of asphalt mastic balls and coarse aggregates were also analyzed. The experimental results explain how the asphalt mixture bears vehicle load and the potential reasons why the rutting forms from a micro-mechanical view.
基金supported by the National Natural Science Foundation of China (Grant No.52075414)the National Science and Technology Major Project,China (Grant No.2017-V-0009).
文摘Blade strain distribution and its change with time are crucial for reliability analysis and residual life evaluation in blade vibration tests.Traditional strain measurements are achieved by strain gauges(SGs)in a contact manner at discrete positions on the blades.This study proposes a method of full-field and real-time strain reconstruction of an aero-engine blade based on limited displacement responses.Limited optical measured displacement responses are utilized to reconstruct the full-field strain.The full-field strain distribution is in-time visualized.A displacement-to-strain transformation matrix is derived on the basis of the blade mode shapes in the modal coordinate.The proposed method is validated on an aero-engine blade in numerical and experimental cases.Three discrete vibrational displacement responses measured by laser triangulation sensors are used to reconstruct the full-field strain over the whole operating time.The reconstructed strain responses are compared with the results measured by SGs and numerical simulation.The high consistency between the reconstructed and measured results demonstrates the accurate strain reconstructed by the method.This paper provides a low-cost,real-time,and visualized measurement of blade full-field dynamic strain using displacement response,where the traditional SGs would fail.
基金supported by National Key Research and Development Plan of China“Basic Theory and Methods for Resilience Assessment and Risk Control of Transportation Infrastructures”(2021YFB2600500)the National Nature Science Foundation of Si Chuan(2023NSFSC0388)the Joint Research Fund for Earthquake Science launched by the National Natural Science Foundation of China and China Earthquake Administration(U2039208).
文摘Purpose–The smoothness of the high-speed railway(HSR)on the bridge may exceed the allowable standard when an earthquake causes vibrations for HSR bridges,which may threaten the safety of running trains.Indeed,few studies have evaluated the exceeding probability of rail displacement exceeding the allowable standard.The purposes of this article are to provide a method for investigating the exceeding probability of the rail displacement of HSRs under seismic excitation and to calculate the exceeding probability.Design/methodology/approach–In order to investigate the exceeding probability of the rail displacement under different seismic excitations,the workflow of analyzing the smoothness of the rail based on incremental dynamic analysis(IDA)is proposed,and the intensity measure and limit state for the exceeding probability analysis of HSRs are defined.Then a finite element model(FEM)of an assumed HSR track-bridge system is constructed,which comprises a five-span simply-supported girder bridge supporting a finite length CRTS II ballastless track.Under different seismic excitations,the seismic displacement response of the rail is calculated;the character of the rail displacement is analyzed;and the exceeding probability of the rail vertical displacement exceeding the allowable standard(2mm)is investigated.Findings–The results show that:(1)The bridge-abutment joint position may form a step-like under seismic excitation,threatening the running safety of high-speed trains under seismic excitations,and the rail displacements at mid-span positions are bigger than that at other positions on the bridge.(2)The exceeding probability of rail displacement is up to about 44%when PGA 50.01g,which is the level-five risk probability and can be described as’very likely to happen’.(3)The exceeding probability of the rail at the mid-span positions is bigger than that above other positions of the bridge,and the mid-span positions of the track-bridge system above the bridge may be the most hazardous area for the running safety of trains under seismic excitation when high-speed trains run on bridges.Originality/value–The work extends the seismic hazardous analysis of HSRs and would lead to a better understanding of the exceeding probability for the rail of HSRs under seismic excitations and better references for the alert of the HSR operation.
文摘The Building Standard Law of Japan and related Enforcement Order and Notifications have been substantially revised since the year 2000 to introduce a performance-based regulatory and deregulation system for building control systems. Up to then,time-history analyses were mandatory for isolated buildings and had to be specially approved by the Minster of the Ministry of Construction (MOC).Simplified design procedures based on the equivalent linear method for seismically isolated buildings have been issued as'Notification 2009-Structnral calculation procedure for buildings with seismic isolation'from MOC,and are now integrated into the Ministry of Land,Infrastructure,and Transportation (MLIT).Along with Notification 2009,'Notification 1446 of year 2000-Standard for specifications and test methods for seismic isolation devices'was also issued.Buildings with heights equal to or less than 60m and that are designed according to these Notifications,including base isolated buildings,only need approval from local building officials,and no longer require the special approval of the Minister of MLIT.This paper summarizes:1) some statistics related to buildings with seismic isolation completed up to the end of 2001; 2) simplified design procedures required by Notification 2009 of year 2000;and 3) performance of seismic isolation devices required by Notification 1446 of year 2000.
文摘The equivalent linearization method approximates the maximum displacement response of nonlinear structures through the corresponding equivalent linear system. By using the particle swarm optimization technique, a new statistical approach is developed to determine the key parameters of such an equivalent linear system over a 2D space of period and damping ratio. The new optimization criterion realizes the consideration of the structural safety margin in the equivalent linearization method when applied to the performance-based seismic design/evaluation of engineering structures. As an application, equations for equivalent system parameters of both bilinear hysteretic and stiffness degrading single-degree-of- freedom systems are deduced with the assumption of a constant ductility ratio. Error analyses are also performed to validate the proposed approach.
基金This work was supported by the National Natural Science Foundation of China(No.50275116and50475088)the National High-Tech Research and Development Programof China(No.2002AA503020).
文摘Objective The experimental study on the lift-up speed of a new kind of compliant aerodynamic foil thrust bearings was performed on the multifunctional test rig established for testing the performances of foil gas bearings.Methods The lift-up speed of foil gas thrust bearing under given axial load was analyzed through the spectrum of axial displacement response in frequency domain.Results The test results indicated that the difference in the spectrum of axial displacement responses before and after lifting up of the rotor was obvious.After lifting up of the rotor,there were only larger components of rotation frequency and lower harmanic frequencies.If the rotor wasn't lift-up,there were also larger components of other frequencies in the spectrum.Conclusion So by analyzing the spectrum of axial displacement response,the results showed that the lift-up speed was about 1860rpm when the axial load was 31N.
基金the National Natural Science Foundation of China(Nos.52278311,52178503,U2005216,and 51908374)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030148)+2 种基金the Shenzhen Science and Technology Innovation Program(Nos.JCYJ20220531101609020,KQTD20200820113004005,and GJHZ20220913143006012)the Foundation of State Key Laboratory for Disaster Reduction in Civil Engineering,Tongji University(No.SLDRCE19-B-10)the National Key Laboratory of Green and Long-Life Road Engineering in Extreme Environment.
文摘Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges.The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper.Firstly,four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions,respectively.These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities.Finally,three displacement responses of the bridge deck under four different independent variables ofβin the exponential function and four modulation functions were compared,respectively.Results show that the turbulence intensities using two non-uniform modulation functions(NMF)are larger than those using uniform modulation functions(uMF).Moreover,the root mean square(RMS)values of three displacement responses increase with the decrease ofβ.Besides,the RMS values of three displacement under two NMFs are larger than those under two uMFs,and their RMS values under the second uMF are the smallest.
基金supported in part by Xi’an Aero-Engine(Group)Ltd.National Key Scientific Instrument and Equipment Development Project(2016YFF0101900)+1 种基金National Natural Science Foundation of China(Grant 51575310)Beijing Municipal Natural Science Foundation(Grant 3162014)。
文摘Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.