期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Source localization with minimum variance distortionless response for spherical microphone arrays 被引量:1
1
作者 黄青华 钟强 庄启雷 《Journal of Shanghai University(English Edition)》 CAS 2011年第1期21-25,共5页
To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave deco... To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave decomposition. The spatial spectrum function is calculated by minimum variance distortionless response (MVDR) to scan the three-dimensional space. The peak values of the spectrum function correspond to the directions of multiple sound sources. A diagonal loading method is adopted to solve the ill-conditioned cross spectrum matrix of the received signals. The loading level depends on the alleviation of the ill-condition of the matrix and the accuracy of the inverse calculation. Compared with plane wave decomposition method, our proposed localization algorithm can acquire high spatial resolution and better estimation for multiple sound source directions, especially in low signal to noise ratio (SNR). 展开更多
关键词 source localization spherical microphone arrays minimum variance distortionless response (MVDR) plane wave decomposition
下载PDF
Third Order Adjoint Sensitivity and Uncertainty Analysis of an OECD/NEA Reactor Physics Benchmark: III. Response Moments 被引量:3
2
作者 Ruixian Fang Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第4期559-570,共12页
The (180)<sup>3</sup> third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cros... The (180)<sup>3</sup> third-order mixed sensitivities of the leakage response of a polyethylene-reflected plutonium (PERP) experimental benchmark with respect to the benchmark’s 180 microscopic total cross sections have been computed in accompanying works [1] [2]. This work quantifies the contributions of these (180)<sup>3</sup> third-order mixed sensitivities to the PERP benchmark’s leakage response distribution moments (expected value, variance and skewness) and compares these contributions to those stemming from the corresponding first- and second-order sensitivities of the PERP benchmark’s leakage response with respect to the total cross sections. The numerical results obtained in this work reveal that the importance of the 3<sup>rd</sup>-order sensitivities can surpass the importance of the 1<sup>st</sup>- and 2<sup>nd</sup>-order sensitivities when the parameters’ uncertainties increase. In particular, for a uniform standard deviation of 10% of the microscopic total cross sections, the 3<sup>rd</sup>-order sensitivities contribute 80% to the response variance, whereas the contribution stemming from the 1st- and 2nd-order sensitivities amount only to 2% and 18%, respectively. Consequently, neglecting the 3<sup>rd</sup>-order sensitivities could cause a very large non-conservative error by under-reporting the response variance by a factor of 506%. The results obtained in this work also indicate that the effects of the 3<sup>rd</sup>-order sensitivities are to reduce the response’s skewness in parameter space, rendering the distribution of the leakage response more symmetric about its expected value. The results obtained in this work are the first such results ever published in reactor physics. Since correlations among the group-averaged microscopic total cross sections are not available, only the effects of typical standard deviations for these cross sections could be considered. Due to this lack of correlations among the cross sections, the effects of the <em>mixed</em> 3<sup>rd</sup>-order sensitivities could not be quantified exactly at this time. These effects could be quantified only when correlations among the group-averaged microscopic total cross sections would be obtained experimentally by the nuclear physics community. 展开更多
关键词 Polyethylene-Reflected Plutonium Sphere 3rd-Order Sensitivities 1st-Order 2nd-Order and 3rd-Order Uncertainty Analysis Microscopic Total Cross Sections Expected Value variance and Skewness of response Distribution
下载PDF
Improved minimum variance distortionless response spectrum method for efficient and robust non-uniform undersampled frequency identification in blade tip timing
3
作者 Ruochen JIN Laihao YANG +3 位作者 Zhibo YANG Shaohua TIAN Guangrong TENG Xuefeng CHEN 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第4期165-181,共17页
The noncontact blade tip timing(BTT)measurement has been an attractive technology for blade health monitoring(BHM).However,the severe undersampled BTT signal causes a significant challenge for blade vibration paramete... The noncontact blade tip timing(BTT)measurement has been an attractive technology for blade health monitoring(BHM).However,the severe undersampled BTT signal causes a significant challenge for blade vibration parameter identification and fault feature extraction.This study proposes a novel method based on the minimum variance distortionless response(MVDR)of the direction of arrival(DoA)estimation for blade natural frequency estimation from the non-uniformly undersampled BTT signals.First,based on the similarity between the general data acquisition model for BTT and the antenna array model in DoA estimation,the circumferentially arranged probes on the casing can be regarded as a non-uniform linear array.Thus,BTT signal reconstruction is converted into the DoA estimation problem of the non-uniform linear array signal.Second,MVDR is employed to address the severe undersampling issue and recover the BTT undersampled signal.In particular,spatial smoothing is innovatively utilized to enhance the estimation of covariance matrix of the BTT signal to avoid ill-condition or singularity,while improving efficiency and robustness.Lastly,numerical simulation and experimental testing are employed to verify the validity of the proposed method.Monte Carlo simulation results suggest that the proposed method behaves better than conventional methods,especially under a lower signal-to-noise ratio condition.Experimental results indicate that the proposed method can effectively overcome the severe undersampling problem of BTT signal induced by physical limitations,and has a strong potential in the field of BHM. 展开更多
关键词 blade tip timing(BTT) frequency identification minimum variance distortionless response(MVDR) undersampled blade health monitoring(BHM)
原文传递
Beamforming analysis based on CSB sin-FDA 被引量:2
4
作者 WANG Bo XIE Junwei +1 位作者 ZHANG Jing ZHANG Haowei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第1期73-84,共12页
This paper studies the adaptive beamforming algorithm based on the frequency diverse array(FDA)array where the interference is located at the same angle(but different range)with the target.We take the cross subarray-b... This paper studies the adaptive beamforming algorithm based on the frequency diverse array(FDA)array where the interference is located at the same angle(but different range)with the target.We take the cross subarray-based FDA with sinusoidal frequency offset(CSB sin-FDA)as the receiving array instead of the basic FDA.The sampling covariance matrix under insufficient snapshot can be corrected by the automatic diagonal loading method.On the basis of decomposing the mismatched steering vector error into a vertical component and a parallel one,this paper searches the vertical component of the error by the quadratic constraint method.The numerical simulation verifies that the beamformer based on the CSB sin-FDA can effectively hold the mainlobe at the target position when the snapshot is insufficient or the steering vector is mismatched. 展开更多
关键词 receiving processing architectures minimum variance distortionless response(MVDR)beamformer cross subarraybased frequency diverse array with sinusoidal frequency offset(CSB sin-FDA) steering vector SNAPSHOTS
下载PDF
Third-Order Adjoint Sensitivity Analysis of an OECD/NEA Reactor Physics Benchmark: I. Mathematical Framework 被引量:2
5
作者 Dan Gabriel Cacuci Ruixian Fang 《American Journal of Computational Mathematics》 2020年第4期503-528,共26页
This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u... This work extends to third-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. The PERP benchmark comprises 21,976 imprecisely known (uncertain) model parameters. Previous works have used the adjoint sensitivity analysis methodology to compute exactly and efficiently all of the 21,976 first-order and (21,976)<sup>2</sup> second-order sensitivities of the PERP benchmark’s leakage response to all of the benchmark’s uncertain parameters, showing that the largest and most consequential 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities are with respect to the total microscopic cross sections. These results have motivated extending the previous adjoint-based derivations to third-order, leading to the derivation, in this work, of the exact mathematical expressions of the (180)<sup>3</sup> third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections. The formulas derived in this work are valid not only for the PERP benchmark but can also be used for computing the 3<sup>rd</sup>-order sensitivities of the leakage response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of these (180)<sup>3</sup> third-order sensitivities (which turned out to be very large and consequential) and use them for a third-order uncertainty analysis of the PERP benchmark’s leakage response. 展开更多
关键词 Polyethylene-Reflected Plutonium Sphere 1st-Order 2nd-Order and 3rd-Order Sensitivities 3rd-Order Adjoint Sensitivity Analysis Microscopic Total Cross Sections Expected Value variance and Skewness of response Distribution
下载PDF
A parallel complex divider architecture based on DCD iterations for computing complex division in MVDR beamformer
6
作者 KIDAV Jayaraj U SIVA Mangai N M PERUMAL M Pillai 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1124-1135,共12页
This paper presents a hardware architecture using mixed pipeline and parallel processing for complex division based on dichotomous coordinate descent(DCD) iterations. The objective of the proposed work is to achieve l... This paper presents a hardware architecture using mixed pipeline and parallel processing for complex division based on dichotomous coordinate descent(DCD) iterations. The objective of the proposed work is to achieve low-latency and resource optimized complex divider architecture in adaptive weight computation stage of minimum variance distortionless response(MVDR)algorithm. In this work, computation of complex division is modeled as a 2×2 linear equation solution problem and the DCD algorithm allows linear systems of equations to be solved with high degree of computational efficiency. The operations in the existing DCD algorithm are suitably parallel pipelined and the performance is optimized to 2 clock cycles per iteration. To improve the degree of parallelism, a parallel column vector read architecture is devised.The proposed work is implemented on the field programmable gate array(FPGA) platform and the results are compared with state-of-art literature. It concludes that the proposed architecture is suitable for complex division in adaptive weight computation stage of MVDR beamformer. We demonstrate the performance of the proposed architecture for MVDR beamformer employed in medical ultrasound imaging applications. 展开更多
关键词 minimum variance distortionless response(MVDR) beamformer adaptive weight dichotomous coordinate descent(DCD) algorithm medical ultrasound imaging
下载PDF
Detailed parametric design methodology for hydrodynamics of liquid-solid circulating fluidized bed using design of experiments 被引量:1
7
作者 Ritesh Ramesh Palkar Vidyasagar Shilapuram 《Particuology》 SCIE EI CAS CSCD 2017年第2期59-68,共10页
A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, ... A design-of-experiments methodology is used to develop a statistical model for the prediction of the hydrodynamics of a liquid–solid circulating fluidized bed. To illustrate the multilevel factorial design approach, a step by step methodology is taken to study the effects of the interactions among the independent factors considered on the performance variables. A multilevel full factorial design with three levels of the two factors and five levels of the third factor has been studied. Various statistical models such as the linear, two-factor interaction, quadratic, and cubic models are tested. The model has been developed to predict responses, viz., average solids holdup and solids circulation rate. The validity of the developed regression model is verified using the analysis of variance. Furthermore, the model developed was compared with an experimental dataset to assess its adequacy and reliability. This detailed statistical design methodology for non-linear systems considered here provides a very important tool for design and optimization in a cost-effective approach 展开更多
关键词 Hydrodynamics Liquid-solid circulating fluidized bed Statistical design Factorial design approach response prediction Analysis of variance
原文传递
An experimental study on matched field processing in shallow water
8
作者 GUO Lianghao SONG Mingkai and GONG Xianyi(Hangzhou Applied Acoustics Institute, Fuyang Zhejiang 311400) 《Chinese Journal of Acoustics》 1996年第3期272-280,共9页
Matched field processing (MFP) is a generalized beamforming method which uses the spatial complexities of acoustic field in an ocean waveguide to localize sources in range, depth and azimuth or to infer parameters of ... Matched field processing (MFP) is a generalized beamforming method which uses the spatial complexities of acoustic field in an ocean waveguide to localize sources in range, depth and azimuth or to infer parameters of the waveguide itself. In the paper, we present simulated and experimental results on narrow-band point source localization in shallow water by the matched field processing of a vertical array. Range-depth ambiguity surfaces are obtained by the spatial correlation of the incident field (modeled or realistic) with a modeled replica of that field. The simulated results indicate that a high-quality ambiguity surface can be obtained in case of perfect match between the 'true' environmental parameters and those used to compute the replica field. The effects of mismatches result in a degraded ambiguity surface and incorrect localization. Examples of localizations obtained with real sea test data are presented. It is shown that the conventional methods have better robustness than the minimum variance distortionless response (MVDR) based method. By employing the reduced minimum variance beamforming (RMVB), we can also get better results. 展开更多
关键词 Matched field processing Minimum variance distortionless response Reduced minimum variance beamforming Ambiguity surface
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部