This paper presents a test resource partitioning technique based on anefficient response compaction design called quotient compactor(q-Compactor). Because q-Compactor isa single-output compactor, high compaction ratio...This paper presents a test resource partitioning technique based on anefficient response compaction design called quotient compactor(q-Compactor). Because q-Compactor isa single-output compactor, high compaction ratios can be obtained even for chips with a small numberof outputs. Some theorems for the design of q-Compactor are presented to achieve full diagnosticability, minimize error cancellation and handle unknown bits in the outputs of the circuit undertest (CUT). The q-Compactor can also be moved to the load-board, so as to compact the outputresponse of the CUT even during functional testing. Therefore, the number of tester channelsrequired to test the chip is significantly reduced. The experimental results on the ISCAS ''89benchmark circuits and an MPEG 2 decoder SoC show that the proposed compaction scheme is veryefficient.展开更多
基金国家自然科学基金,the Sci. & Technol. Project of Beijing,中国科学院资助项目,Synopsys公司资助项目
文摘This paper presents a test resource partitioning technique based on anefficient response compaction design called quotient compactor(q-Compactor). Because q-Compactor isa single-output compactor, high compaction ratios can be obtained even for chips with a small numberof outputs. Some theorems for the design of q-Compactor are presented to achieve full diagnosticability, minimize error cancellation and handle unknown bits in the outputs of the circuit undertest (CUT). The q-Compactor can also be moved to the load-board, so as to compact the outputresponse of the CUT even during functional testing. Therefore, the number of tester channelsrequired to test the chip is significantly reduced. The experimental results on the ISCAS ''89benchmark circuits and an MPEG 2 decoder SoC show that the proposed compaction scheme is veryefficient.