期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Immobilization of Lactobacillus rhamnosus TISTR108 on Crude Pectin of Krung Kha Mao Leaves (Cissampe/os pareira L.) to Produce Lactic Acid in Longan Juice 被引量:1
1
作者 Sukjai Choojun 《Journal of Agricultural Science and Technology(B)》 2013年第3期221-229,共9页
L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus T1STR108 on crude pectin from Krung Kha Mao Leaves. Central composite design was employed to determine the maximum lactic acid product... L-(+)-lactic acid production was studied by immobilized Lactobacillus rhamnosus T1STR108 on crude pectin from Krung Kha Mao Leaves. Central composite design was employed to determine the maximum lactic acid production of 42.88 g L-1 in predicted model with the factors at 4.11 g L1 of pectin, 6.05 mLLl inoculum and 1.09 mm of bead diameter. Statistical analyses demonstrated very high significance for the regression model, since the F-value computed 116.09 was much higher than the tabulated F-value 2.08 for the lactic acid production at 5% level for linear and quadratic polynomial regression models. The highest experimental lactic acid production was 43.57 g L^-1 at 96 h of fermentation, 1.58% higher than the predicted value. 展开更多
关键词 L-(+)-lactic acid Lactobacillus rhammosus Krung Kha Mao leaves (Cissampelos pareira L.) longan juice responsesurface methodology.
下载PDF
Multidiscipline collaborative optimization of differential steering system of electric vehicle with motorized wheels 被引量:7
2
作者 ZHAO WanZhong XU XiaoHong WANG ChunYan 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第12期3462-3468,共7页
Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering eco... Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors. 展开更多
关键词 electric vehicle with motorized wheels differential steering collaborative optimization design of experiments responsesurface model
原文传递
Multi-objective optimization of combustion, performance and emission parameters in a jatropha biodiesel engine using non-dominated sorting genetic algorithm-II 被引量:3
3
作者 Sunil Dhingra Gian Bhushan Kashyap Kumar Dubey 《Frontiers of Mechanical Engineering》 SCIE CSCD 2014年第1期81-94,共14页
The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response su... The present work studies and identifies the different variables that affect the output parameters involved in a single cylinder direct injection compression ignition (CI) engine using jatropha biodiesel. Response surface methodology based on Central composite design (CCD) is used to design the experiments. Mathematical models are developed for combustion parameters (Brake specific fuel consumption (BSFC) and peak cylinder pressure (Pmax)), performance parameter brake thermal efficiency (BTE) and emission parameters (CO, NOx, unburnt HC and smoke) using regression techniques. These regression equations are further utilized for simultaneous optimization of combustion (BSFC, Pmax), performance (BTE) and emission (CO, NOx, HC, smoke) parameters. As the objective is to maximize BTE and minimize BSFC, Pmax, CO, NOx, HC, smoke, a multi- objective optimization problem is formulated. Non- dominated sorting genetic algorithm-II is used in predict- ing the Pareto optimal sets of solution. Experiments are performed at suitable optimal solutions for predicting the combustion, performance and emission parameters to check the adequacy of the proposed model. The Pareto optimal sets of solution can be used as guidelines for the end users to select optimal combination of engine outputand emission parameters depending upon their own requirements. 展开更多
关键词 jatropha biodiesel fuel properties responsesurface methodology multi-objective optimization non-dominated sorting genetic algorithm-II
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部