A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal...The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
Levulinic acid(LA) has been identified as a promising green,biomass derived platform chemical.Response surface analysis(RSA) with a four-factor-five-level central composite design(CCD) was applied to optimize th...Levulinic acid(LA) has been identified as a promising green,biomass derived platform chemical.Response surface analysis(RSA) with a four-factor-five-level central composite design(CCD) was applied to optimize the hydrolysis conditions for the conversion of bamboo(Phyllostachys Praecox f.preveynalis) shoot shell(BSS) to LA catalyzed with ionic liquid [C4mim]HSO4.The effects of four main reaction parameters including temperature,time,C[C4mim]HSO4(initial [C4mim]HSO4 concentration) and XBSS(initial BSS intake) on the hydrolysis reaction for yield of LA were analyzed.A quadratic equation model for yield of LA was established and fitted to the data with an R2 of 0.9868,and effects of main factors and their corresponding relationships were obtained with RSA.Model validation and results of CCD showed good correspondence between actual and predicted values.The analysis of variance(ANOVA) of the results indicated that the yield of LA in the range studied was significantly(P<0.05) affected by the four factors.The optimized reaction conditions were as follows:temperature of 145 ℃,time of 103.8 min,C[C4mim]HSO4 of 0.9 mol.L-1 and XBSS of 2.04%(by mass),respectively.A high yield [(71±0.41)%(by mol),triplicate experiment] was obtained at the optimum conditions of temperature of 145 ℃,time of 104 min,C[C4mim]HSO4 of 0.9 mol.L-1 and XBSS of 2%(by mass),which obtained from the real experiments,concurred with the model prediction [73.8%(by mol) based on available C6 sugars in BSS or 17.9%(by mass) based on the mass of BSS],indicating that the model was adequate for the hydrolysis process.展开更多
The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant i...The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.展开更多
Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, com...Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.展开更多
An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coeffic...An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coefficients can be determined with response spectral analysis. The optimization method degenerates into the conventional method used in current practices when only two modes of vibration are included in the objective function. Therefore, the proposed method with all significant modes included for simplicity in practical applications results in suboptimal damping coefficients. The effects of both spatial distribution and frequency content of excitations as well as structural dynamic characteristics on the evaluation of Rayleigh damping coefficients were investigated with a five-story building structure. Two application examples with a 62-story high-rise building and a 840 m long cable-stayed bridge under ten earthquake excitations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.展开更多
This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochas...This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.展开更多
Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in stu...Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.展开更多
Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural...Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.展开更多
A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditiona...A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.展开更多
Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear freq...Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear frequency response analysis, global bifurcation, frequency chart and Poincaré maps were used simultaneously to derive strange super chaotic attractor.According to Lyapunov exponents calculated by Gram-Schmidt method, the unstable region was compartmentalized and the super chaotic characteristic of ...展开更多
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2...This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.展开更多
The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of sev...The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.展开更多
A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and ...A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.展开更多
The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment...The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.展开更多
The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was c...The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.展开更多
As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearin...As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.展开更多
Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequenci...Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine.展开更多
The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational mod...The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.展开更多
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.
基金supported in part by the National Natural Science Foundation of China(Nos.51978337,U2039209).
文摘The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.
基金Supported by the National Natural Science Foundation of China(30940058,31170672)the Natural Science Foundation of Zhejiang Province of China(Y3110025)+1 种基金Key Laboratory for Physical Processing of Agricultural Products(JAPP2010-4)Key Laboratory of Exploitation and Preservation of Coastal Bio-resource(2010F30003)
文摘Levulinic acid(LA) has been identified as a promising green,biomass derived platform chemical.Response surface analysis(RSA) with a four-factor-five-level central composite design(CCD) was applied to optimize the hydrolysis conditions for the conversion of bamboo(Phyllostachys Praecox f.preveynalis) shoot shell(BSS) to LA catalyzed with ionic liquid [C4mim]HSO4.The effects of four main reaction parameters including temperature,time,C[C4mim]HSO4(initial [C4mim]HSO4 concentration) and XBSS(initial BSS intake) on the hydrolysis reaction for yield of LA were analyzed.A quadratic equation model for yield of LA was established and fitted to the data with an R2 of 0.9868,and effects of main factors and their corresponding relationships were obtained with RSA.Model validation and results of CCD showed good correspondence between actual and predicted values.The analysis of variance(ANOVA) of the results indicated that the yield of LA in the range studied was significantly(P<0.05) affected by the four factors.The optimized reaction conditions were as follows:temperature of 145 ℃,time of 103.8 min,C[C4mim]HSO4 of 0.9 mol.L-1 and XBSS of 2.04%(by mass),respectively.A high yield [(71±0.41)%(by mol),triplicate experiment] was obtained at the optimum conditions of temperature of 145 ℃,time of 104 min,C[C4mim]HSO4 of 0.9 mol.L-1 and XBSS of 2%(by mass),which obtained from the real experiments,concurred with the model prediction [73.8%(by mol) based on available C6 sugars in BSS or 17.9%(by mass) based on the mass of BSS],indicating that the model was adequate for the hydrolysis process.
基金National Key Research and Development Program of China under Grant No.2016YFC0701106Natural Sciences and Engineering Research Council of Canada via Discovery under Grant No.NSERC RGPIN-2017-05556 Li
文摘The nonlinear finite element(FE) analysis has been widely used in the design and analysis of structural or geotechnical systems.The response sensitivities(or gradients) to the model parameters are of significant importance in these realistic engineering problems.However the sensitivity calculation has lagged behind,leaving a gap between advanced FE response analysis and other research hotspots using the response gradient.The response sensitivity analysis is crucial for any gradient-based algorithms,such as reliability analysis,system identification and structural optimization.Among various sensitivity analysis methods,the direct differential method(DDM) has advantages of computing efficiency and accuracy,providing an ideal tool for the response gradient calculation.This paper extended the DDM framework to realistic complicated soil-foundation-structure interaction(SFSI) models by developing the response gradients for various constraints,element and materials involved.The enhanced framework is applied to three-dimensional SFSI system prototypes for a pilesupported bridge pier and a pile-supported reinforced concrete building frame structure,subjected to earthquake loading conditions.The DDM results are verified by forward finite difference method(FFD).The relative importance(RI) of the various material parameters on the responses of SFSI system are investigated based on the DDM response sensitivity results.The FFD converges asymptotically toward the DDM results,demonstrating the advantages of DDM(e.g.,accurate,efficient,insensitive to numerical noise).Furthermore,the RI and effects of the model parameters of structure,foundation and soil materials on the responses of SFSI systems are investigated by taking advantage of the sensitivity analysis results.The extension of DDM to SFSI systems greatly broaden the application areas of the d gradient-based algorithms,e.g.FE model updating and nonlinear system identification of complicated SFSI systems.
文摘Unconditionally stable higher-order accurate time step integration algorithms based on the differential quadrature method (DQM) for second-order initial value problems were applied and the quadrature rules of DQM, computing of the weighting coefficients and choices of sampling grid points were discussed. Some numerical examples dealing with the heat transfer problem, the second-order differential equation of imposed vibration of linear single-degree-of-freedom systems and double-degree-of-freedom systems, the nonlinear move differential equation and a beam forced by a changing load were computed, respectively. The results indicated that the algorithm can produce highly accurate solutions with minimal time consumption, and that the system total energy can remain conservative in the numerical computation.
基金National Natural Science Foundation of China under Grant No.51078032the Visiting Scholar Foundation of China Scholarship Councilthe Center for Infrastructure Engineering Studies at Missouri University of Science and Technology
文摘An optimization method for the consistent evaluation of two Rayleigh damping coefficients is proposed. By minimizing an objective function such as an error term of the peak displacement of a structure, the two coefficients can be determined with response spectral analysis. The optimization method degenerates into the conventional method used in current practices when only two modes of vibration are included in the objective function. Therefore, the proposed method with all significant modes included for simplicity in practical applications results in suboptimal damping coefficients. The effects of both spatial distribution and frequency content of excitations as well as structural dynamic characteristics on the evaluation of Rayleigh damping coefficients were investigated with a five-story building structure. Two application examples with a 62-story high-rise building and a 840 m long cable-stayed bridge under ten earthquake excitations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.
基金National Natural Science Foundation of China for Innovative Research Groups Under Grant No.50321803 & 50621062National Natural Science Foundation of China Under Grant No.50808113 & 10872148
文摘This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described. An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.
基金financial support from the National Science Foundation of China(22078190)the National Key R&D Plan of China(2020YFB1505802)。
文摘Rate capability,peak power,and energy density are of vital importance for the capacitive energy storage(CES)of electrochemical energy devices.The frequency response analysis(FRA)is regarded as an efficient tool in studying the CES.In the present work,a bi-scale impedance transmission line model(TLM)is firstly developed for a single pore to a porous electrode.Not only the TLM of the single pore is reparameterized but also the particle packing compactness is defined in the bi-scale.Subsequently,the CES properties are identified by FRA,focused on rate capability vs.characteristic frequency,peak power vs.equivalent series resistance,and energy density vs.low frequency limiting capacitance for a single pore to a porous electrode.Based on these relationships,the CES properties are numerically simulated and theoretically predicted for a single pore to a porous electrode in terms of intra-particle pore length,intra-particle pore diameter,inter-particle pore diameter,electrolyte conductivity,interfacial capacitance&exponent factor,electrode thickness,electrode apparent surface area,and particle packing compactness.Finally,the experimental diagnosis of four supercapacitors(SCs)with different electrode thicknesses is conducted for validating the bi-scale TLM and gaining an insight into the CES properties for a porous electrode to a single pore.The calculating results suggest,to some extent,the inter-particle pore plays a more critical role than the intra-particle pore in the CES properties such as the rate capability and the peak power density for a single pore to a porous electrode.Hence,in order to design a better porous electrode,more attention should be given to the inter-particle pore.
基金National Natural Science Foundation of China(51208296&51478343)Shanghai Committee of Science and Technology(13231200503)+2 种基金Fundamental Research Funds for the Central Universities(2013KJ095&101201438)Shanghai Educational Development Foundation(13CG17)National Key Technology R&D Program(2012BAK24B04)
文摘Discrete models such as the lumped parameter model and the finite element model are widely used in the solution of soil amplification of earthquakes. However, neither of the models will accurately estimate the natural frequencies of soil deposit, nor simulate a damping of frequency independence. This research develops a new discrete model for onedimensional viscoelastic response analysis of layered soil deposit based on the mode equivalence method. The new discrete model is a one-dimensional equivalent multi-degree-of-freedom(MDOF) system characterized by a series of concentrated masses, springs and dashpots with a special configuration. The dynamic response of the equivalent MDOF system is analytically derived and the physical parameters are formulated in terms of modal properties. The equivalent MDOF system is verified through a comparison of amplification functions with the available theoretical solutions. The appropriate number of degrees of freedom(DOFs) in the equivalent MDOF system is estimated. A comparative study of the equivalent MDOF system with the existing discrete models is performed. It is shown that the proposed equivalent MDOF system can exactly present the natural frequencies and the hysteretic damping of soil deposits and provide more accurate results with fewer DOFs.
基金Project supported by the National Natural Science Foundation of China (No.10176011).
文摘A new type of vibration structure (i.e. supporting system, called swing frame cus- tomarily) of vertical dynamic balancing machine has been designed, which is based on an analysis for the swing frame of a traditional double-plane vertical dynamic balancing machine. The static unbalance and couple unbalance can be e?ectively separated by using the new dynamic balancing machine with the new swing frame. By building the dynamics model, the advantages of the new structure are discussed in detail. The modal and harmonic response are analyzed by using the ANSYS7.0. By comparing the ?nite element modal analysis with the experimental modal analy- sis, the natural frequencies and vibration modes are found. There are many spring boards in the new swing frame. Their sti?nesses are di?erent and assorted with each other. Furthermore, there are three sensors on the measuring points. Therefore, the new dynamic balancing machine can measure static unbalance and coupling unbalance directly, and the interaction between them is faint. The result shows that the new vertical dynamic balancing machine is suitable for inertial measurement of ?ying objects, and can overcome the shortcomings of traditional double-plane vertical dynamic balancing machines, which the e?ect of plane-separation is inferior. The vertical dynamic balancing machine with the new vibration structure can ?nd wide application in the future. The modelling and analysis of the new vibration structure will provide theoretical basis and practical experience for designing new-type vertical dynamic balancing machines.
文摘Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear frequency response analysis, global bifurcation, frequency chart and Poincaré maps were used simultaneously to derive strange super chaotic attractor.According to Lyapunov exponents calculated by Gram-Schmidt method, the unstable region was compartmentalized and the super chaotic characteristic of ...
文摘This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.
文摘The seismic behavior of horizontally curved bridges,particularly with unequal height piers,is more complicated than that of straight bridges due to their geometric properties.In this study,the seismic responses of several horizontally curved single-column-bent viaducts with various degrees of curvature and different pier heights have been investigated,employing three different analysis approaches:namely,modal pushover analysis,uniform load method,and nonlinear time history analysis.Considering the investigated bridge configurations and utilizing the most common regularity indices,the results indicate that viaducts with 45-degree and 90-degree deck subtended angles can be categorized as regular and moderately irregular,respectively,while the bridges with 180-degree deck subtended angle are found to be highly irregular.Furthermore,the viaducts whose pier heights are asymmetric may be considered as irregular for almost all ranges of the deck subtended angles.The effects of higher transverse and longitudinal modes are discussed and the minimum analysis requirements are identified to assess the seismic response of such bridge configurations for design purposes.Although the Regularity Indices used here are useful tools to distinguish between regular and irregular bridges,further studies are needed to improve their reliability.
基金Funded by the Natural Science Foundation of China (No. 50675232)the Natural Science Foundation of CQ CSTC (2006BB3008)
文摘A dynamic finite element method combined with finite element mixed formula for contact problem is used to analyze the dynamic characteristics of gear system. Considering the stiffness excitation, error excitation and meshing shock excitation, the dynamic finite element model is established for the entire gear system which includes gears, shafts, bearings and gearbox housing. By the software of I-DEAS, the natural frequency, normal mode, dynamic time-domain response, frequency-domain response and one-third octave velocity grade structure borne noise of gear system are studied by the method of theoretical modal analysis and dynamic response analysis. The maximum values of vibration and structure borne noise are occurred at the mesh frequency of output grade gearing.
文摘The seismic design and analysis of nuclear power plant (NPP) begin with the seismic hazard assessment and design ground motion development for the site. The following steps are needed for the seismic hazard assessment and design ground motion development:a. the development of regional seismo-tectonic model with seismic source areas within 500 km radius centered to the site;b. the development of strong motion prediction equations; c. logic three development for taking into account uncertainties and seismic hazard quantification;d. the development of uniform hazard response spectra for ground motion at the site;e. simulation of acceleration time histories compatible with uniform hazard response spectra. The following phase two in seismic design of NPP structures is the analysis of structural response for the design ground motion. This second phase of the process consists of the following steps:a. development of structural models of the plant buildings;b. development of the soil model underneath the plant buildings for soilstructure interaction response analysis;c. determination of instructure response spectra for the plant buildings for the equipment response analysis. In the third phase of the seismic design and analysis the equipment is analyzed on the basis of in-structure response spectra. For this purpose the structural models of the mechanical components and piping in the plant are set up. In large 3D-structural models used today the heaviest equipment of the primary coolant circuit is included in the structural model of the reactor building. In the fourth phase the electrical equipment and automation and control equipment are seismically qualified with the aid of the in-structure spectra developed in the phase two using large three-axial shaking tables. For this purpose the smoothed envelope spectra for calculated in-structure spectra are constructed and acceleration time is fitted to these smoothed envelope spectra.
文摘The paper introduces some findings about a sensitivity analysis conducted on every geometrical and mechanical parameters which characterize the use of a railway superstructure at the high velocity. This analysis was carried out by implementing a forecast model that is derived from the simplified Gazetas and Dobry one. This model turns out to be particularly appropriate in the explication of problems connected to high velocity, since it evaluates both inertial and viscous effects activated by the moving load speed. The model implementation requires the transfer function determination that represents the action occurred by the bed surfaces on the railway and it therefore contains information concerning the geometrical and the mechanical characteristics of the embankment, of the ballast and of the sub-ballast. The transfer function H has been evaluated with the finite elements method and particularly, by resorting the ANSYS code with a harmonic structural analysis in the frequencies field. The authors, from the critic examination of the system's dynamics response in its entirety, glean a series of observations both of a general and a specific character, finally attaining a propose of a design modification of the standard railway superstructure at the high velocity of train operation adopted today especially in Italy.
基金Special Topic of the Ministry of Education about Humanities and Social Sciences(12JDGC007)National Science and Technology Support Project(2011BAF09B01)Key State Science and Technology Projects(2009ZX04010-021)
文摘As to motorized spindle system, this paper builds a simplified 3D model of spindle and bearing, performs structure modal analysis, reveals its dynamic characteristics under the free model; furthermore, modifies bearing radial stiffness and number of model and studies the change of modal parameters. On this basis, through the harmonic response analysis of the finite element model, dy- namic response characteristic caused by imbalance of monitored spindle system and law of vibration response to different amount of unbalance is analyzed.
基金Research Grants for Returned Students of China under Grant No.2020-038the National Natural Science Foundation of China under Grant No.51408392。
文摘Vibration induced by shield construction can lead to liquefaction of saturated sand.Based on FLAC3D software,a numerical model of tunnel excavation is established and sinusoidal velocity loads with different frequencies are applied to the excavation face.The pattern of the excess pore pressure ratio with frequency,as well as the dynamic response of soil mass under different frequency loads before excavation,is analyzed.When the velocity sinusoidal wave acts on the excavation surface of the shield tunnel with a single sand layer,soil liquefaction occurs.However,the ranges and locations of soil liquefaction are different at different frequencies,which proves that the vibration frequency influences the liquefaction location of the stratum.For sand-clay composite strata with liquefiable layers,the influence of frequency on the liquefaction range is different from that of a single stratum.In the frequency range of 5-30 Hz,the liquefaction area and surface subsidence decrease with an increase in vibration frequency.The research results in this study can be used as a reference in engineering practice for tunneling liquefiable strata with a shield tunneling machine.
基金supported by the National Natural Science Foundation of China(No.50179006)Science Development Foundation of Shandong University of Science and Technology(No.05g002).
文摘The study on the earthquake-resistant performance of a pile-soil-structure interaction system is a relatively complicated and primarily important issue in civil engineering practice. In this paper, a computational model and computation procedures for pile-supported structures, which can duly consider the pile-soil interaction effect, arc established by the finite clement method. Numerical implementation is made in the time domain. A simplified approximation for the seismic response analysis of pile-soil-structure systems is briefly presented. Then a comparative study is performed for an engineering example with numerical results computed respectively by the finite clement method and the simplified method. Through comparative analysis, it is shown that the results obtained by the simplified method well agree with those achieved by the finite element method. The numerical results and findings will offer instructive guidelines for earthquake-resistant analysis and design of pile-supported structures.