期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
1
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period Rooted soil Shear resistance characteristics Root traits Soil physical properties
下载PDF
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land,China
2
作者 NAN Weige DONG Zhibao +2 位作者 ZHOU Zhengchao LI Qiang CHEN Guoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第1期14-28,共15页
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin... Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China. 展开更多
关键词 Sabina vulgaris plantation age soil physical and chemical properties soil particle size soil fertility vegetation restoration Mu Us Sandy Land
下载PDF
Impact of Vegetation Restoration on Soil Fungal Community Structure in Karst Rocky Desertification Areas
3
作者 Shasha WANG Jiacheng LAN 《Meteorological and Environmental Research》 2024年第2期55-61,共7页
In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology... In this paper,managed forest(MF)and natural forest(NF)in the Huajiang Demonstration Zone of Guanling,Guizhou were selected as research objects,and cropland(CL)was taken as control.High-throughput sequencing technology was used to study the characteristics of fungal community composition and species diversity in the surface(0-10 cm)soil of each restoration measure,in order to reveal the dominant soil fungal groups and fungal community composition in karst rocky desertification areas,which was conducive to a more comprehensive understanding of the soil conditions of different vegetation restoration measures.Research has shown that vegetation restoration significantly affected the diversity of soil fungal community,with significant increases in Sob index,Ace index,and Chao index.The vegetation restoration has significantly changed the composition of fungal community.The dominant fungi in the CL topsoil are Sordariomycetes(62.28%),Dothideomycetes(12.34%),and Eurotiomycetes(9.12%);the dominant fungi in the MF soil are Sordariomycetes(45.05%),Dothideomycetes(14.74%),and Mortierellomycetes(10.40%);the dominant fungi in the NF soil are unclassified fungal community(26.38%),Sordariomycetes(19.78%),and Agaricomycetes(13.82%).Vegetation restoration has changed the key fungal groups in the soil.Sordariomycetes,Fusarium,and Setophoma are the key dominant fungal groups in CL soil;Dioszegia is key dominant fungal group in MF soil;c_unclassified_k_Fungi,p_unclassified_k_Fungi,o_unclassified_k_Fungi,f_unclassified_k_Fungi,g_unclassified_k_Fungi,Teichospora,and Diaporthe are key dominant fungal groups in NF soil. 展开更多
关键词 Karst rocky desertification Vegetation restoration Soil fungal community Fungal diversity
下载PDF
Effects of Artificial Vegetation Restoration on Soil Physicochemical Properties in Southern Edge of Mu Us Sandy Land 被引量:3
4
作者 杨越 孙宏 +3 位作者 韩永娇 武智勇 宋双双 赵瑞 《Agricultural Science & Technology》 CAS 2014年第4期648-652,691,共6页
[Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered... [Objective] This study aimed to investigate the artificial vegetations on soil physicochemical properties of sandy land. [Method] The soil physicochemical proper- ties in five representative lands respectively covered by Artemisia ordosica, Salix cheilophila, Hedysarum scoparium, Populus simonii and Amorpha fruticosa, all of which were planted artificially at the same year were measured in the present study, using a bare soil as the control. [Result] Artificial vegetation improved the soil physicochemical properties by different extents in the lands covered by different plants. The soil physicochemical properties such as bulk density under A. Fruticosa and H. Scoparium were improved greatly. The frequency distribution of soil particle size under artificial vegetations exhibited a bimodal curve. The average soil particle size under A. fruticosa was the smallest, and the soil was very poorly sorted. The soil nutrients in the sandy land were not significantly improved by artificial vegeta- tion. [Conclusion] Artificial vegetation has a certain impact on soil properties in sandy land, as it greatly improves the soil physical properties but not the chemical properties. 展开更多
关键词 Artificial vegetation restoration Soil physicochemical properties Mu Us sandy land
下载PDF
Ecological Regionalization of Suitable Trees, Shrubs and Herbages for Vegetation Restoration in the Farming-Pastoral Zone of Northern China 被引量:5
5
作者 康慕谊 董世魁 +3 位作者 黄晓霞 熊敏 陈海 张新时 《Acta Botanica Sinica》 CSCD 2003年第10期1157-1165,共9页
To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-far... To provide materials for the selection of plant species for vegetation restoration and reconstruction in the farming-pastoral zone in northern China, where the eco-environment has been already deteriorated by over-farming and over-grazing, the suitable trees, shrubs and herbages were examined, screened and identified under the guidance of four principles of taking precedence for ecological conservation, being beneficial to economic production, matching species (trees, shrubs and herbages) with the site, and giving consideration to the integrity of local administrative division. According to the key ecological factors that determine species growth and distribution in the zone, i.e., the lowest daily mean temperature in a year, annual accumulated temperature, and water regimes represented by the moist index, the ratio between annual rainfall and accumulated temperature (>0 degreesC), as well as the soil type influenced by climate, surface substances and landform, the farming-pastoral zone was regionalized into seven parts: ( I) Western Songliao Plain and Da Hinggan Mountain Region; (II) Upper Liaohe River Sandy Region; (III) Mid-Eastern Nei Mongol Plateau and Northwestern Heibei Mountain Region; (IV) Luliang, Taihang and Yanshan Mountain Region; ( V) Ordos Plateau Sandy Region; (VI) Northern Shaanxi to Eastern Gansu Loess Plateau Region; and (VII) Mid Gansu to Eastern Qinghai Plateau Loess Region. And the suitable trees, shrubs and herbages for each region were selected and tabularly introduced in detail. 展开更多
关键词 farming-pastoral zone ecological regionalization suitable species for vegetation restoration northern China
下载PDF
Study on the Characteristics of Main Vegetation Communities in the Limestone Region of Taihang Mountain 被引量:4
6
作者 弓运泽 周大迈 任士魁 《Agricultural Science & Technology》 CAS 2011年第12期1932-1936,共5页
[Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific... [Objective] The aim was to study the characteristics of main vegetation communities in the limestone region of Taihang Mountain,so as to lay foundation for the further improvement of site conditions and the scientific breeding of vegetation used to restore the mountain field in limestone region.[Method] Based on the investigation of various vegetation communities in controlled test area,forbidden region and barren hillsides in Daqing Mountain basin,Beishui Valley,Mancheng County,Hebei Province,the difference among controlled region,forbidden region and barren hillsides could be found through data analysis and composite score,and the modes of vegetation communities in controlled region and forbidden region were compared to select predominant species of arbor,shrub and grass in limestone region.[Result] Under the similar site conditions,nutrient content and physical properties of soil in controlled region and forbidden region were superior to those of barren hillsides,and persimmon had high nutrient content and better physical properties compared with oriental arborvitae in controlled region;soil water maintenance and litter characters in controlled region and forbidden region improved more obviously than that of barren hillsides,and shrubbery in forbidden region was the most excellent,arborvitae and persimmon in controlled region the second;the biomass and the coverage rate of vegetation communities in controlled region and forbidden region were higher than those of barren hillsides,and those of shrubbery in forbidden region were better than tussock in closing hill,while persimmon was better than arborvitae in controlled region.The predominant species of arbor,shrub and herbage were obtained through composite score.[Conclusion] From the aspects of soil nutrient,physical properties,soil water maintenance,litter characters,vegetation biomass,canopy density and coverage,controlled region and forbidden region were superior to barren hillsides,and the selection of predominant species of arbor,shrub and herbage considered both ecological and economic benefits. 展开更多
关键词 LIMESTONE Vegetation community Vegetation restoration Preponderant species
下载PDF
Effect of Site Factor on Plant Community Characteristic in Closed Watershed in Loess Hilly and Gully Region 被引量:2
7
作者 刘中奇 朱清科 +2 位作者 王晶 邝高明 赵荟 《Agricultural Science & Technology》 CAS 2011年第2期274-278,共5页
[Objective] The aim was to study the effect of site factor on plant community characteristic in closed watershed in loess hilly and gully region.[Method] Based on the investigation of vegetation in the closed watershe... [Objective] The aim was to study the effect of site factor on plant community characteristic in closed watershed in loess hilly and gully region.[Method] Based on the investigation of vegetation in the closed watershed of Wuqi County in Shaanxi Province,the difference of plant community characteristic and species diversity under various site types was researched in our paper.[Result] In the investigation area,xerophytic herb was the main community,with sole species composition and simple community structure.Zonal vegetations were Artemisia sacrorum and Artemisia giraldii community;for plant diversity,the order of diversity index was ridge topgully bottomridge slopegully slope in various landform positions and semi-shady slopeshady slopesemi-sunny slopesunny slope in various slope aspects;with the increase of gradient,the diversity index of sunny slope changed with "S" type,and it reached maximum value at 37°.[Conclusion] Our study could provide theoretical foundation for vegetative restoration in loess hilly and gully region. 展开更多
关键词 Species diversity Vegetative restoration Landform position Slope aspect GRADIENT
下载PDF
Effects of Vegetation Restoration in Different Types on Soil Nutrients in Southern Edge of Mu Us Sandy Land 被引量:1
8
作者 杨越 哈斯.额尔敦 +3 位作者 孙保平 杜会石 赵岩 钟晓娟 《Agricultural Science & Technology》 CAS 2012年第8期1708-1712,1783,共6页
In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us De... In order to explore effects of vegetation on nutrients in soils, nutrients characters of soils under natural grass, closed grass, abandoned lands, forest lands returned from farmlands and fixed sandy areas in Mu Us Desert were researched. The results indicated that vegetations in varied types have different effects on organic matter, total N, available N and available P, among which the first three were all higher in soils under closed grass, forest lands returned from farmlands, and fixed sandy lands than those under natural grass and abandoned lands. This was totally contrary with contents of available P in soil. In addition, nutrients in soils at 0-20 cm were more influenced by vegetation, than those at 20-60 cm, and Caragana Korshinskii proved better in improving nutrients in soils. 展开更多
关键词 Vegetation restoration Change of soil nutrient Mu Us sandy land
下载PDF
Effect of Typical Vegetation Restoration Pattern on Soil and Water Conservation in Yuanmou Dry-hot Valley of Yunnan Province 被引量:1
9
作者 南岭 郭芬芬 +1 位作者 王小丹 刘刚才 《Agricultural Science & Technology》 CAS 2010年第11期167-171,201,共6页
In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecologi... In Yuanmou dry-hot valley of Yunnan Province,three typical vegetation restoration patterns including production forest transformed from sloping fields to terracing,ecological afforestation within the gully and ecological aforestation in gully head and slope were selected to compare their effects on soil and water conservation.Soil and water loss,soil infiltration rate and the soil moisture dynamics of soil profile with the depth of 0-100 cm of these three patterns and their controls were observed by established standard observation plots in rainy season.The results showed that the soil and water loss of ecological afforestation and production forest terrace reduced by over 30% and 60% compared with their controls(without growth of any vegetation)respectively,showing significant control effect on the soil and water loss.Vegetation restoration also apparently increased the infiltration rate of soil(increased by 100%-200%).In rainy season,the soil moisture content of ecological afforestation and production forest terrace increased by over 30% and 100% compared with their controls.This indicated that vegetation restoration will not lead to soil aridity during the rainy season;vegetation restoration not only reduced the loss of surface water and soil fine particles,but also enhanced the infiltration of precipitation.These two effects made the soil moisture content increase throughout the profile. 展开更多
关键词 Dry-hot valley Soil and water loss Vegetation restoration Soil moisture
下载PDF
Vegetation Influence Investigation of GangnanHuangbizhuang Reservoir Downstream River and Recovery Strategies
10
作者 张茹春 郑振华 +1 位作者 崔建军 张韬 《Agricultural Science & Technology》 CAS 2015年第11期2552-2554,共3页
The research selected three typical areas for plant investigation, including upper reaches of Gangnan Reservoir, the area between Gangnan and downstream of Huangbizhuang Reservoir, and Huangbizhuang Reservoir. The res... The research selected three typical areas for plant investigation, including upper reaches of Gangnan Reservoir, the area between Gangnan and downstream of Huangbizhuang Reservoir, and Huangbizhuang Reservoir. The results showed that affected by water, plant species, species diversity and species richness were all decreasing in varying degrees as the distance with watercourse upper reaches was increasing, but the ratio of Anthropochory plants was growing. The research finally proposed countermeasures, including increasing wetland area, constructing forests and artificial water landscape of Hutuo River and reinforcing watercourse compre- hensive management. 展开更多
关键词 The reservoir downstream river VEGETATION Gangnan-Huangbizhuangreservoir Vegetation restoration
下载PDF
层次分析法在采矿塌陷区植物组合优化选择的应用
11
作者 陈秀梅 刘颖华 李佳 《中国城市林业》 2008年第1期31-33,共3页
运用层次分析法,分析了唐山市南部采矿塌陷区不同土壤上的不同植物组合,设计的植物组合综合效果如何,运用Excel作图与数据统计分析,得出不同土壤植物组合的排列顺序,用以指导塌陷区的植被恢复绿化。
关键词 AHP Vegetation restoration
下载PDF
Effect of Vegetation Changes on Soil Erosion on the Loess Plateau 被引量:94
12
作者 ZHENG Fen-Li 《Pedosphere》 SCIE CAS CSCD 2006年第4期420-427,共8页
Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff... Vegetation is one of the key factors affecting soil erosion on the Loess Plateau. The effects of vegetation destruction and vegetation restoration on soil erosion were quantified using data from long-term field runoff plots established on the eastern slope of the Ziwuling secondary forest region, China and a field survey. The results showed that before the secondary vegetation restoration period (before about 1866-1872), soil erosion in the Ziwuling region of the Loess Plateau was similar to the current erosion conditions in neighboring regions, where the soil erosion rate now is 8000 to 10000 t km-2 year-1. After the secondary vegetation restoration, soil erosion was very low; influences of rainfall and slope gradient on soil erosion were small; the vegetation effect on soil erosion was predominant; shallow gully and gully erosion ceased; and sediment deposition occurred in shallow gully and gully channels. In modern times when human activities destroyed secondary forests, soil erosion increased markedly, and erosion rates in the deforested lands reached 10000 to 24000 t km-2 year-1, which was 797 to 1682 times greater than those in the forested land prior to deforestation. Rainfall intensity and landform greatly affected the soil erosion process after deforestation. These results showed that accelerated erosion caused by vegetation destruction played a key role in soil degradation and eco-environmental deterioration in deforested regions. 展开更多
关键词 DEFORESTATION Loess Plateau natural vegetation restoration soil erosion
下载PDF
Effects of Vegetation Restoration on Soil Organic Carbon in China:A Meta-analysis 被引量:7
13
作者 GONG Li LIU Guohua +3 位作者 WANG Meng YE Xin WANG Hao LI Zongshan 《Chinese Geographical Science》 SCIE CSCD 2017年第2期188-200,共13页
Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of ... Vegetation restoration has been proposed as an effective method for increasing both plant biomass and soil carbon(C) stocks. In this study, 204 publications(733 observations) were analyzed, focusing on the effects of vegetation restoration on soil organic carbon(SOC) in China. The results showed that SOC was increased by 45.33%, 24.43%, 30.29% and 27.98% at soil depths of 0–20 cm, 20–40 cm, 40–60 cm and > 60 cm after vegetation restoration, respectively. Restoration from both cropland and non-cropland increased the SOC content. The conversion of non-cropland was more efficient in SOC accumulation than the conversion of cropland did, especially in > 40 cm layers. In addition, the conversion to planted forest led to greater SOC accumulation than that to other land use did. Conversion period and initial SOC content extended more influence on soil C accumulation as the main factors after vegetation restoration than temperature and precipitation did. The SOC content significantly increased with restoration period after long-term vegetation restoration(> 40 yr), indicating a large potential for further accumulation of carbon in the soil, which could mitigate climate change in the near future. 展开更多
关键词 soil carbon content vegetation restoration land-use change conversion period restoration approach China
下载PDF
Revegetation with artificial plants improves topsoil hydrological properties but intensifies deep-soil drying in northern Loess Plateau,China 被引量:8
14
作者 ZHANG Qingyin JIA Xiaoxu +1 位作者 ZHAO Chunlei SHAO Ming'an 《Journal of Arid Land》 SCIE CSCD 2018年第3期335-346,共12页
Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type an... Knowledge about the effects of vegetation types on soil properties and on water dynamics in the soil profile is critical for revegetation strategies in water-scarce regions, especially the choice of vegetation type and human management measures. We focused on the analysis of the effects of vegetation type on soil hydrological properties and soil moisture variation in the 0–400 cm soil layer based on a long-term(2004―2016) experimental data in the northern Loess Plateau region, China. Soil bulk density(BD), saturated soil hydraulic conductivity(Ks), field capacity(FC) and soil organic carbon(SOC) in 2016, as well as the volumetric soil moisture content during 2004–2016, were measured in four vegetation types, i.e., shrubland(korshinsk peashrub), artificial grassland(alfalfa), fallow land and cropland(millet or potato). Compared with cropland, revegetation with peashrub and alfalfa significantly decreased BD and increased Ks, FC, and SOC in the 0–40 cm soil layer, and fallow land significantly increased FC and SOC in the 0–10 cm soil layer. Soil water storage(SWS) significantly declined in shrubland and grassland in the 40–400 cm soil layer, causing severe soil drought in the deep soil layers. The study suggested that converting cropland to grassland(alfalfa) and shrubland(peashrub) improved soil-hydrological properties, but worsened water conditions in the deep soil profile. However, natural restoration did not intensify deep-soil drying. The results imply that natural restoration could be better than revegetation with peashrub and alfalfa in terms of good soil hydrological processes in the semi-arid Loess Plateau region. 展开更多
关键词 soil drying soil hydrological property soil moisture vegetation restoration Loess Plateau
下载PDF
Effects of the vegetation restoration years on soil microbial community composition and biomass in degraded lands in Changting County,China 被引量:7
15
作者 Yonghui Bai Xuan Zha Shifa Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第4期1295-1308,共14页
We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing thei... We evaluated the effects of the number of years of restoration of vegetation on soil microbial community structure and biomass in degraded ecosystems.We investigated the microbial community structure by analyzing their phospholipid fatty acids then examined microbial biomass carbon and nitrogen by chloroform fumigation extraction of restoration soils over several years.The data were compared with those of highly degraded lands and native vegetation sites.The results show that the duration of vegetation on the sites substantially increased microbial biomass and shifted the microbial community structure even after only 4 years.However,microbial communities and biomass did not recover to the status of native vegetation even after 35 years of vegetation cover.A redundancy analysis and Pearson correlation analysis indicated that soil organic carbon,total nitrogen,available potassium,soil water content,silt content and soil hardness explained 98.4%of total variability in the microbial community composition.Soil organic carbon,total nitrogen,available potassium and soil water content were positively correlated with microbial community structure and biomass,whereas,soil hardness and silt content were negatively related to microbial community structure and biomass.This study provides new insights into microbial community structure and biomass that influence organic carbon,nitrogen,phosphorus and potassium accumulation,and clay content in soils at different stages of restoration. 展开更多
关键词 Vegetation restoration Soil microorganisms Environmental factors PLFA Degraded red soil lands
下载PDF
Soil hydraulic conductivity as affected by vegetation restoration age on the Loess Plateau,China 被引量:10
16
作者 REN Zongping ZHU Liangjun +1 位作者 WANG Bing CHENG Shengdong 《Journal of Arid Land》 SCIE CSCD 2016年第4期546-555,共10页
The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetat... The Loess Plateau of China has experienced extensive vegetation restoration in the past several decades, which leads to great changes in soil properties such as soil bulk, porosity, and organic matter with the vegetation restoration age. And these soil properties have great effect on the soil infiltration and soil hydraulic conductivity. However, the potential changes in soil hydraulic conductivity caused by vegetation restoration age have not been well understood. This study was conducted to investigate the changes in soil hydraulic conductivity under five grasslands with different vegetation restoration ages (3, 10, 18, 28 and 37 years) compared to a slope farmland, and further to identify the factors responsible for these changes on the Loess Plateau of China. At each site, accumulative infiltration amount and soil hydraulic conductivity were determined using a disc permeameter with a water supply pressure of -20 mm. Soil properties were measured for analyzing their potential factors influencing soil hydraulic conductivity. The results showed that the soil bulk had no significant changes over the initial 20 years of restoration (P〉0.05); the total porosity, capillary porosity and field capacity decreased significantly in the grass land with 28 and 37 restoration ages compared to the slope farmland; accumulative infiltration amount and soil hydraulic conductivity were significantly enhanced after 18 years of vegetation restoration. However, accumulative infiltration amount and soil hydraulic conductivity fluctuated over the initial 10 years of restoration. The increase in soil hydraulic conductivity with vegetation restoration was closely related to the changes in soil texture and structure. Soil sand and clay contents were the most influential factors on soil hydraulic conductivity, followed by bulk density, soil porosity, root density and crust thickness. The Pearson correlation coefficients indicated that the soil hydraulic conductivity was affected by multiply factors. These results are helpful to understand the changes in hydrological and erosion processes response to vegetation succession on the Loess Plateau. 展开更多
关键词 disc permeameter effect factors soil infiltration vegetation restoration Loess Plateau
下载PDF
Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of southern China 被引量:9
17
作者 Chan Chen Xi Fang +3 位作者 Wenhua Xiang Pifeng Lei Shuai Ouyang and Yakov Kuzyakov 《Forest Ecosystems》 SCIE CSCD 2020年第3期404-420,共17页
Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about th... Background: Soil and vegetation have a direct impact on the process and direction of plant community succession, and determine the structure, function, and productivity of ecosystems. However, little is known about the synergistic influence of soil physicochemical properties and vegetation features on vegetation restoration. The aim of this study was to investigate the co-evolution of soil physicochemical properties and vegetation features in the process of vegetation restoration, and to distinguish the primary and secondary relationships between soil and vegetation in their collaborative effects on promoting vegetation restoration in a subtropical area of China.Methods: Soil samples were collected to 40 cm in four distinct plant communities along a restoration gradient from herb(4–5 years), to shrub(11–12 years), to Pinus massoniana coniferous and broadleaved mixed forest(45–46 years), and to evergreen broadleaved forest(old growth forest). Measurements were taken of the soil physicochemical properties and Shannon–Wiener index(SD), diameter at breast height(DBH), height(H), and biomass. Principal component analysis, linear function analysis, and variation partitioning analysis were then performed to prioritize the relative importance of the leading factors affecting vegetation restoration.Results: Soil physicochemical properties and vegetation features showed a significant trend of improvement across the vegetation restoration gradient, reflected mainly in the high response rates of soil organic carbon(SOC)(140.76%), total nitrogen(TN)(222.48%), total phosphorus(TP)(59.54%), alkaline hydrolysis nitrogen(AN)(544.65%),available phosphorus(AP)(53.28%), species diversity(86.3%), biomass(2906.52%), DBH(128.11%), and H(596.97%).The soil properties(pH, SOC, TN, AN, and TP) and vegetation features(biomass, DBH, and H) had a clear coevolutionary relationship over the course of restoration. The synergistic interaction between soil properties and vegetation features had the greatest effect on biomass(55.55%–72.37%), and the soil properties contributed secondarily(3.30%–31.44%). The main impact factors of biomass varied with the restoration periods.Conclusions: In the process of vegetation restoration, soil and vegetation promoted each other. Vegetation restoration was the cumulative result of changes in soil fertility and vegetation features. 展开更多
关键词 Vegetation restoration Soil physicochemical properties Soil organic carbon Vegetation features Driving factors
下载PDF
Effect of Land Cover Change on Soil Phosphorus Fractions in Southeastern Horqin Sandy Land, Northern China 被引量:6
18
作者 ZHAO Qiong ZENG De-Hui +1 位作者 FAN Zhi-Ping D. K. LEE 《Pedosphere》 SCIE CAS CSCD 2008年第6期741-748,共8页
In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees ... In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region. 展开更多
关键词 AFFORESTATION Horqin sandy land soil phosphorus vegetation restoration
下载PDF
Effects of fencing on vegetation and soil restoration in a degraded alkaline grassland in northeast China 被引量:12
19
作者 Qiang LI DaoWei ZHOU +3 位作者 YingHua JIN MinLing WANG YanTao SONG GuangDi LI 《Journal of Arid Land》 SCIE CSCD 2014年第4期478-487,共10页
In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected... In order to restore a degraded alkaline grassland, the local government implemented a large restoration project using fences in Changling county, Jilin province, China, in 2000. Grazing was excluded from the protected area, whereas the grazed area was continuously grazed at 8.5 dry sheep equivalent(DSE)/hm2. In the current research, soil and plant samples were taken from grazed and fenced areas to examine changes in vegetation and soil properties in 2005, 2006 and 2008. Results showed that vegetation characteristics and soil properties improved significantly in the fenced area compared with the grazed area. In the protected area the vegetation cover, height and above- and belowground biomass increased significantly. Soil pH, electrical conductivity and bulk density decreased significantly, but soil organic carbon and total nitrogen concentration increased greatly in the protected area. By comparing the vegetation and soil characteristics with pre-degraded grassland, we found that vegetation can recover 6 years after fencing, and soil pH can be restored 8 years after fencing. However, the restoration of soil organic carbon, total nitrogen and total phosphorus concentrations needed 16, 30 and 19 years, respectively. It is recommended that the stocking rate should be reduced to 1/3 of the current carrying capacity, or that a grazing regime of 1-year of grazing followed by a 2-year rest is adopted to sustain the current status of vegetation and soil resources. However, if N fertilizer is applied, the rest period could be shortened, depending on the rate of application. 展开更多
关键词 vegetation and soil restoration FENCING GRAZING alkaline soil semi arid region grassland degradation
下载PDF
Vegetation Restoration in Response to Climatic and Anthropogenic Changes in the Loess Plateau, China 被引量:6
20
作者 QU Lulu HUANG Yunxin +1 位作者 YANG Lingfan LI Yurui 《Chinese Geographical Science》 SCIE CSCD 2020年第1期89-100,共12页
A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges... A thorough understanding of the vegetation succession in relation to both climatic changes and anthropogenic activities is vital for the formulation of adaptation strategies that address potential ecosystem challenges.Various climatic factors such as temperature,precipitation,and solar radiation,as well as anthropogenic factors such as ecological engineering and population migration,will affect the conditions for vegetation.However,the relationships among various factors remain unclear and the response of vegetation to climate change and anthropogenic activities in the Loess Plateau of China has not been well established.This study investigated the spatio-temporal characteristics and relationships between vegetation coverage and climatic factors in the Loess Plateau for the period of 1985–2015.Further analysis separated the anthropogenic and climatic factors on vegetation succession based on residual analysis.The results showed that the normalized difference vegetation index(NDVI)followed a significant upward trend with annual change rates of 0.15%during 1985–2015.The trend of human-induced NDVI increase was consistent with the spatial distribution of increasing forest areas in the eastern part of the Loess Plateau.Eco-restoration projects were the main driving factors that promoted vegetation coverage on the Loess Plateau.Furthermore,these results demonstrated that migrants to cities in the Loess Plateau could relieve ecological pressures and promote vegetation restoration.Therefore,the government should strive to increase population mobility and restore vegetation to sustain this particularly fragile ecological environment. 展开更多
关键词 vegetation restoration climate change anthropogenic activities Loess Plateau the Grain for Green Project
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部