In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribu...In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.展开更多
Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that ...Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.展开更多
In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective sprea...In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.展开更多
In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free t...In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.展开更多
This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping rela...This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.展开更多
We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in...We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.展开更多
In this work, we propose a new model of evolution networks, which is based on the evolution of the traffic flow. In our method, the network growth does not take into account preferential attachment, and the attachment...In this work, we propose a new model of evolution networks, which is based on the evolution of the traffic flow. In our method, the network growth does not take into account preferential attachment, and the attachment of new node is independent of the degree of nodes. Our aim is that employing the theory of evolution network, we give a further understanding about the dynamical evolution of the traffic flow. We investigate the probability distributions and scaling properties of the proposed model The simulation results indicate that in the proposed model, the distribution of the output connections can be well described by scale-free distribution. Moreover, the distribution of the connections is largely related to the traffic flow states, such as the exponential distribution (i.e., the scale-free distribution) and random distribution etc.展开更多
This paper presents a modified susceptible-infected-recovered(SIR) model with the effects of awareness and vaccination to study the epidemic spreading on scale-free networks based on the mean-field theory.In this mo...This paper presents a modified susceptible-infected-recovered(SIR) model with the effects of awareness and vaccination to study the epidemic spreading on scale-free networks based on the mean-field theory.In this model,when susceptible individuals receive awareness from their infected neighbor nodes,they will take vaccination measures.The theoretical analysis and the numerical simulations show that the existence of awareness and vaccination can significantly improve the epidemic threshold and reduce the risk of virus outbreaks.In addition,regardless of the existence of vaccination,the awareness can increase the spreading threshold and slow the spreading speed effectively.For a given awareness and a certain spreading rate,the total number of infections reduces with the increasing vaccination rate.展开更多
A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving ...A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.展开更多
Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are we...Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.展开更多
In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi-Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field ...In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi-Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ∈ (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model.展开更多
With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential atta...With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.展开更多
Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of...Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.展开更多
This paper presents a new routing strategy by introducing a tunable parameter into the minimum information path routing strategy we proposed previously. It is found that network transmission capacity can be considerab...This paper presents a new routing strategy by introducing a tunable parameter into the minimum information path routing strategy we proposed previously. It is found that network transmission capacity can be considerably enhanced by adjusting the parameter with various allocations of node capability for packet delivery. Moreover, the proposed routing strategy provides a traffic load distribution which can better match the allocation of node capability than that of traditional efficient routing strategies, leading to a network with improved transmission performance. This routing strategy, without deviating from the shortest-path routing strategy in the length of paths too much, produces improved performance indexes such as critical generating rate, average length of paths and average search information.展开更多
We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transition...We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.展开更多
Fitness of node can denote its competing power and clustering denotes the transitivity of network. Because the fitness of node is uncertain or fuzzy in some social networks, an explicit form of the degree distribution...Fitness of node can denote its competing power and clustering denotes the transitivity of network. Because the fitness of node is uncertain or fuzzy in some social networks, an explicit form of the degree distribution on fuzzy fitness is derived within a mean field approach. It is a weighted sum of different fuzzy fitness. It can be found that the fuzzy fitness of nodes may lead to multiscaling. Moreover, the clustering coefficient of node decays as power law and clustering coefficient of network behavior not-decrease-but-increase’ phenomenon after some time. Some computer simulation results of these models illustrate these analytical results.展开更多
In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feed...In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.展开更多
In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its...In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.展开更多
Despite the large size of most communication and transportation systems, there are short paths between nodes in these networks which guarantee the efficient information, data and passenger delivery; furthermore these ...Despite the large size of most communication and transportation systems, there are short paths between nodes in these networks which guarantee the efficient information, data and passenger delivery; furthermore these networks have a surprising tolerance under random errors thanks to their inherent scale-free topology. However, their scale-free topology also makes them fragile under intentional attacks, leaving us a challenge on how to improve the network robustness against intentional attacks without losing their strong tolerance under random errors and high message and passenger delivering capacity. Here We propose two methods (SL method and SH method) to enhance scale-free network's tolerance under attack in different conditions.展开更多
基金The National Natural Science Foundation of China(No70571013,70973017)Program for New Century Excellent Talentsin University (NoNCET-06-0471)Human Social Science Fund Project ofMinistry of Education (No09YJA630020)
文摘In order to simulate the real growing process, a new type of knowledge network growth mechanism based on local world connectivity is constructed. By the mean-field method, theoretical prediction of the degree distribution of the knowledge network is given, which is verified by Matlab simulations. When the new added node's local world size is very small, the degree distribution of the knowledge network approximately has the property of scale-free. When the new added node's local world size is not very small, the degree distribution transforms from pure power-law to the power-law with an exponential tailing. And the scale-free index increases as the number of new added edges decreases and the tunable parameters increase. Finally, comparisons of some knowledge indices in knowledge networks generated by the local world mechanism and the global mechanism are given. In the long run, compared with the global mechanism, the local world mechanism leads the average knowledge levels to slower growth and brings homogenous phenomena.
文摘Based on the random walk and the intentional random walk, we propose two types of immunization strategies which require only local connectivity information. On several typical scale-free networks, we demonstrate that these strategies can lead to the eradication of the epidemic by immunizing a small fraction of the nodes in the networks. Particularly, the immunization strategy based on the intentional random walk is extremely efficient for the assortatively mixed networks.
基金Project supported by the National Natural Science Foundation of China(Grant No.60874091)the Six Projects Sponsoring Talent Summits of Jiangsu Province,China(Grant No.SJ209006)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2010526)the Graduate Student Innovation Research Project of Jiangsu Province,China(Grant No.CXLX110417)
文摘In this paper, we study the epidemic spreading in scale-flee networks and propose a new susceptible-infected- recovered (SIR) model that includes the effect of individual vigilance. In our model, the effective spreading rate is dynamically adjusted with the time evolution at the vigilance period. Using the mean-field theory, an analytical result is derived. It shows that individual vigilance has no effect on the epidemic threshold. The numerical simulations agree well with the analytical result. Purthermore, we investigate the effect of individual vigilance on the epidemic spreading speed. It is shown that individual vigilance can slow the epidemic spreading speed effectively and delay the arrival of peak epidemic infection.
基金supported by the Natural Science Foundation of Hebei Province,China(Grant No.F2014203239)the Autonomous Research Fund of Young Teacher in Yanshan University(Grant No.14LGB017)Yanshan University Doctoral Foundation,China(Grant No.B867)
文摘In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure.
基金supported by the National Basic Research Program of China (973) (Grant No 2006CB705500)the National Natural Science Foundation of China (Grant No 70671008)
文摘This paper investigates the behaviour of traffic flow in traffic systems with a new model based on the NaSch model and cluster approximation of mean-field theory. The proposed model aims at constructing a mapping relationship between the microcosmic behaviour and the macroscopic property of traffic flow. Results demonstrate that scale-free phenomenon of the evolution network becomes obvious when the density value of traffic flow reaches at the critical point of phase transition from free flow to traffic congestion, and jamming is limited in this scale-free structure.
基金Supported by the National Natural Science Foundation of China (90204012, 60573036) and the Natural Science Foundation of Hebei Province (F2006000177)
文摘We study the detailed malicious code propagating process in scale-free networks with link weights that denotes traffic between two nodes. It is found that the propagating velocity reaches a peak rapidly then decays in a power-law form, which is different from the well-known result in unweighted network case. Simulation results show that the nodes with larger strength are preferential to be infected, but the hierarchical dynamics are not clearly found. The simulation results also show that larger dispersion of weight of networks leads to slower propagating, which indicates that malicious code propagates more quickly in unweighted scale-free networks than in weighted scale-free networks under the same condition. These results show that not only the topology of networks but also the link weights affect the malicious propagating process.
基金The project supported by National Natural Science Foundations of China under Grant Nos and Technology Foundation of Beijing Jiaotong University under Grant No. 2004SM026 70471088 and 70225005 and Che Science.
文摘In this work, we propose a new model of evolution networks, which is based on the evolution of the traffic flow. In our method, the network growth does not take into account preferential attachment, and the attachment of new node is independent of the degree of nodes. Our aim is that employing the theory of evolution network, we give a further understanding about the dynamical evolution of the traffic flow. We investigate the probability distributions and scaling properties of the proposed model The simulation results indicate that in the proposed model, the distribution of the output connections can be well described by scale-free distribution. Moreover, the distribution of the connections is largely related to the traffic flow states, such as the exponential distribution (i.e., the scale-free distribution) and random distribution etc.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60874091)the Six Projects Sponsoring Talent Summits of Jiangsu Province,China (Grant No. SJ209006)+1 种基金the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2010526)the Graduate Student Innovation Research Program of Jiangsu Province,China (Grant No. CXLX11 0414)
文摘This paper presents a modified susceptible-infected-recovered(SIR) model with the effects of awareness and vaccination to study the epidemic spreading on scale-free networks based on the mean-field theory.In this model,when susceptible individuals receive awareness from their infected neighbor nodes,they will take vaccination measures.The theoretical analysis and the numerical simulations show that the existence of awareness and vaccination can significantly improve the epidemic threshold and reduce the risk of virus outbreaks.In addition,regardless of the existence of vaccination,the awareness can increase the spreading threshold and slow the spreading speed effectively.For a given awareness and a certain spreading rate,the total number of infections reduces with the increasing vaccination rate.
基金Projects(60504027,60573123) supported by the National Natural Science Foundation of ChinaProject(20060401037) supported by the National Postdoctor Science Foundation of ChinaProject(X106866) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A novel scale-flee network model based on clique (complete subgraph of random size) growth and preferential attachment was proposed. The simulations of this model were carried out. And the necessity of two evolving mechanisms of the model was verified. According to the mean-field theory, the degree distribution of this model was analyzed and computed. The degree distribution function of vertices of the generating network P(d) is 2m^2m1^-3(d-m1 + 1)^-3, where m and m1 denote the number of the new adding edges and the vertex number of the cliques respectively, d is the degree of the vertex, while one of cliques P(k) is 2m^2Ek^-3, where k is the degree of the clique. The simulated and analytical results show that both the degree distributions of vertices and cliques follow the scale-flee power-law distribution. The scale-free property of this model disappears in the absence of any one of the evolving mechanisms. Moreover, the randomicity of this model increases with the increment of the vertex number of the cliques.
基金This work was partially supported by the National Natural Science Foundation of China(62073173,61833011)the Natural Science Foundation of Jiangsu Province,China(BK20191376)the Nanjing University of Posts and Telecommunications(NY220193,NY220145)。
文摘Some recent research reports that a dendritic neuron model(DNM)can achieve better performance than traditional artificial neuron networks(ANNs)on classification,prediction,and other problems when its parameters are well-tuned by a learning algorithm.However,the back-propagation algorithm(BP),as a mostly used learning algorithm,intrinsically suffers from defects of slow convergence and easily dropping into local minima.Therefore,more and more research adopts non-BP learning algorithms to train ANNs.In this paper,a dynamic scale-free network-based differential evolution(DSNDE)is developed by considering the demands of convergent speed and the ability to jump out of local minima.The performance of a DSNDE trained DNM is tested on 14 benchmark datasets and a photovoltaic power forecasting problem.Nine meta-heuristic algorithms are applied into comparison,including the champion of the 2017 IEEE Congress on Evolutionary Computation(CEC2017)benchmark competition effective butterfly optimizer with covariance matrix adapted retreat phase(EBOwithCMAR).The experimental results reveal that DSNDE achieves better performance than its peers.
基金supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2008BAA13B01)
文摘In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi-Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ∈ (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model.
基金Project supported by the Natural Science Foundation of Beijing(Grant No.4152035)the National Natural Science Foundation of China(Grant No.61272507)
文摘With the requirements of users enhanced for wireless communication, the cooperative communication will become a development trend in future. In this paper, a model based on complex networks with both preferential attachment is researched to solve an actual network CCN (Cooperative Communication Network). Firstly, the evolution of CCN is given by four steps with different probabilities. At the same time, the rate equations of nodes degree are presented to analyze the evolution of CCN. Secondly, the degree distribution is analyzed by calculating the rate equation and numerical simulation. Finally, the robustness of CCN is studied by numerical simulation with random attack and intentional attack to analyze the effects of degree distribution and average path length. The results of this paper are more significant for building CCN to programme the resource of communication.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 60872011 and 60502017)the State Key Development Program for Basic Research of China (Grant Nos. 2009CB320504 and 2010CB731800)Program for New Century Excellent Talents in University
文摘Due to the heterogeneity of the structure on a scale-free network, making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult. In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination, an adaptive local routing strategy on a scale-free network is proposed, in which the node adjusts the forwarding probability with the dynamical traffic load (packet queue length) and the degree distribution of neighbouring nodes. The critical queue length of a node is set to be proportional to its degree, and the node with high degree has a larger critical queue length to store and forward more packets. When the queue length of a high degree node is shorter than its critical queue length, it has a higher probability to forward packets. After higher degree nodes are saturated (whose queue lengths are longer than their critical queue lengths), more packets will be delivered by the lower degree nodes around them. The adaptive local routing strategy increases the probability of a packet finding its destination quickly, and improves the transmission capacity on the scale-free network by reducing routing hops. The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60972165)the National High Technology Project of China (Grant No. 2007AA11Z210)+2 种基金the Doctoral Fund of Ministry of Education of China (Grant Nos. 20100092120012,20070286004)the Foundation of High Technology Project in Jiangsu Province,the Natural Science Foundation of Jiangsu Province(Grant No. BK2010240)the Special Scientific Foundation for the"Eleventh-Five-Year" Plan of China
文摘This paper presents a new routing strategy by introducing a tunable parameter into the minimum information path routing strategy we proposed previously. It is found that network transmission capacity can be considerably enhanced by adjusting the parameter with various allocations of node capability for packet delivery. Moreover, the proposed routing strategy provides a traffic load distribution which can better match the allocation of node capability than that of traditional efficient routing strategies, leading to a network with improved transmission performance. This routing strategy, without deviating from the shortest-path routing strategy in the length of paths too much, produces improved performance indexes such as critical generating rate, average length of paths and average search information.
基金supported by the Natural Science Foundation of Shandong Province of China(Grant No.ZR2012AM013)
文摘We numerically study the effect of the channel noise on the spiking synchronization of a scale-free Hodgkin-Huxley neuron network with time delays. It is found that the time delay can induce synchronization transitions at an intermediate and proper channel noise intensity, and the synchronization transitions become strongest when the channel noise intensity is optimal. The neurons can also exhibit synchronization transitions as the channel noise intensity is varied, and this phenomenon is enhanced at around the time delays that can induce the synchronization transitions. It is also found that the synchronization transitions induced by the channel noise are dependent on the coupling strength and the network average degree, and there is an optimal coupling strength or network average degree with which the synchronization transitions become strongest. These results show that by inducing synchronization transitions, the channel noise has a big regulation effect on the synchronization of the neuronal network. These findings could find potential implications for the information transmission in neural systems.
基金This project was supported by"System management",the i mportant subject of shanghai (T0502)
文摘Fitness of node can denote its competing power and clustering denotes the transitivity of network. Because the fitness of node is uncertain or fuzzy in some social networks, an explicit form of the degree distribution on fuzzy fitness is derived within a mean field approach. It is a weighted sum of different fuzzy fitness. It can be found that the fuzzy fitness of nodes may lead to multiscaling. Moreover, the clustering coefficient of node decays as power law and clustering coefficient of network behavior not-decrease-but-increase’ phenomenon after some time. Some computer simulation results of these models illustrate these analytical results.
基金The project supported by the Key Program of National Natural Science Foundation of China under Grant No. 70431002 and National Natural Science Foundation of China under Grant Nos. 70371068 and 10247005 The authors thank Drs. Atay and Chun-Guang Li for their useful advices and discussions.
文摘In the paper, we study effects of scale-free (SF) topology on dynamical synchronization and control in coupled map lattices (CIVIL). Our strategy is to apply three feedback control methods, including constant feedback and two types of time-delayed feedback, to a small fraction of network nodes to reach desired synchronous state. Two controlled bifurcation diagrams verses feedback strength are obtained respectively. It is found that the value of critical feedback strength γc for the first time-delayed feedback control is increased linearly as e is increased linearly. The GML with SF loses synchronization and intermittency occurs if γ 〉 γc. Numerical examples are presented to demonstrate all results.
文摘In this paper, we propose a novel neighbor-preferential growth (NPG) network model. Theoretical analysis and numerical simulations indicate the new model can reproduce not only a scale-free degree distribution and its power exponent is related to the edge-adding number m, but also a small-world effect which has large clustering coefficient and small average path length. Interestingly, the clustering coefficient of the model is close to that of globally coupled network, and the average path length is close to that of star coupled network. Meanwhile, the synchronizability of the NPG model is much stronger than that of BA scale-free network, even stronger than that of synchronization-optimal growth network.
基金Project supported in part by the China Scholarships Council (Grant No. 2007103794)the Defence Threat Reduction Agency Award HDTRA1-08-1-0027+5 种基金the James S. McDonnell Foundation 21st Century Initiative in Studying Complex Systems,the National Science Foundation within the DDDAS (CNS-0540348)ITR (DMR-0426737)IIS-0513650 programsthe US Office of Naval Research Award N00014-07-Cthe National Natural Science Foundation of China (Grant Nos. 80678605 and 60903157)the National High Technology Research and Development Program of China (Grant No. 2009AA01Z422)
文摘Despite the large size of most communication and transportation systems, there are short paths between nodes in these networks which guarantee the efficient information, data and passenger delivery; furthermore these networks have a surprising tolerance under random errors thanks to their inherent scale-free topology. However, their scale-free topology also makes them fragile under intentional attacks, leaving us a challenge on how to improve the network robustness against intentional attacks without losing their strong tolerance under random errors and high message and passenger delivering capacity. Here We propose two methods (SL method and SH method) to enhance scale-free network's tolerance under attack in different conditions.