Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu...Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.展开更多
Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives ...Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.展开更多
Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl do...Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.展开更多
Background:Hemodialysis(HD) per se is a risk factor for thrombosis.Considering the growing body of evidence on blood-flow restriction(BFR) exercise in HD patients,identification of possible risk factors related to the...Background:Hemodialysis(HD) per se is a risk factor for thrombosis.Considering the growing body of evidence on blood-flow restriction(BFR) exercise in HD patients,identification of possible risk factors related to the prothrombotic agent D-dimer is required for the safety and feasibility of this training model.The aim of the present study was to identify risk factors associated with higher D-dimer levels and to determine the acute effect of resistance exercise(RE) with BFR on this molecule.Methods:Two hundred and six HD patients volunteered for this study(all with a glomerular filtration rate of <15 mL/min/1.73 m2).The RE+BFR session consisted of 50% arterial occlusion pressure during 50 min sessions of HD(intradialytic exercise).RE repetitions included concentric and eccentric lifting phases(each lasting 2 s) and were supervised by a strength and conditioning specialist.Results:Several variables were associated with elevated levels of D-dimer,including higher blood glucose,citrate use,recent cardiovascular events,recent intercurrents,higher inflammatory status,catheter as vascular access,older patients(>70 years old),and HD vintage.Furthermore,RE+BFR significantly increases D-dimer after 4 h.Patients with borderline baseline D-dimer levels(400-490 ng/mL) displayed increased risk of elevating D-dimer over the normal range(≥500 ng/mL).Conclusion:These results identified factors associated with a heightened prothrombotic state and may assist in the screening process for HD patients who wish to undergo RE+BFR.D-dimer and/or other fibrinolysis factors should be assessed at baseline and throughout the protocol as a precautionary measure to maximize safety during RE+BFR.展开更多
Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research pr...Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.展开更多
Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine mode...Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine model of pregnancy.We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta,oxidative stress,inflammatory responses,autophagy and endoplasmic reticulum stress(ERS).However,precise mechanisms underlying the BPA-induced placental dysfunction,and subsequently,FGR,as well as the potential involvement of placental ERS in these complications,remain to be investigated.Methods In vivo experiment,16 twin-pregnant(from d 40 to 130 of gestation)Hu ewes were randomly distributed into two groups(8 ewes each).One group served as a control and received corn oil once a day,whereas the other group received BPA(5 mg/kg/d as a subcutaneous injection).In vitro study,ovine trophoblast cells(OTCs)were exposed to 4 treatments,6 replicates each.The OTCs were treated with 400μmol/L BPA,400μmol/L BPA+0.5μg/m L tunicamycin(Tm;ERS activator),400μmol/L BPA+1μmol/L 4-phenyl butyric acid(4-PBA;ERS antagonist)and DMEM/F12 complete medium(control),for 24 h.Results In vivo experiments,pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency,progesterone(P4)level and fetal weight,and an increase in placental estrogen(E2)level,together with barrier dysfunctions,OS,inflammatory responses,autophagy and ERS in type A cotyledons.In vitro experiment,the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy,ERS,pro-apoptosis and inflammatory response,and a decrease in the P4 level and the related protein and gene expressions of antioxidant,anti-apoptosis and barrier function.Moreover,treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine(the increased E2 level and decreased P4 level),OS,inflammatory responses,autophagy,and ERS.However,treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above.Conclusions In general,the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs,and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine,OS,inflammatory responses,and autophagy.These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.展开更多
Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rota...Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.展开更多
Osteoclasts are multinucleated bone-resorbing cells,and their formation is tightly regulated to prevent excessive bone loss.However,the mechanisms by which osteoclast formation is restricted remain incompletely determ...Osteoclasts are multinucleated bone-resorbing cells,and their formation is tightly regulated to prevent excessive bone loss.However,the mechanisms by which osteoclast formation is restricted remain incompletely determined.Here,we found that sterol regulatory element binding protein 2(SREBP2)functions as a negative regulator of osteoclast formation and inflammatory bone loss.Cholesterols and SREBP2,a key transcription factor for cholesterol biosynthesis,increased in the late phase of osteoclastogenesis.展开更多
Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial f...Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial for improving cognitive capacity.However,further exploration is needed to understand the specific mechanisms of high fat diet(HFD)-induced cognitive decline in obesity.In the present study,4-month-old mice were subjected to HFD feeding for 18 weeks,followed by aerobic exercise and high-intensity intermittent exercise,regular diet feeding,and intermittent fasting for 8 weeks,and then used to evaluate cognitive capacity,inflammation,compromised insulin signaling pathway,and apoptosis in hippocampal tissue,as well as AMPK/SIRT1 and TLR4 signal pathways.Obese mice revealed impaired cognitive capacity as compared with mice fed with regular diets.In contrast,aerobic exercise,high-intensity intermittent exercise,regular diet,and intermittent fasting could inhibit apoptosis caused by inflammation-mediated compromised insulin signaling pathway in hippocampal tissues through activating the AMPK/SIRT1 signal pathway and suppressing the TLR4 signal pathway,thereby rescuing the cognitive impairment of obese mice.Therefore,diet restriction and exercise interventions may play a positive role in reverting obesity-induced cognitive impairment.展开更多
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig...Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.展开更多
At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of thi...At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.展开更多
We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics w...We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics with a fixed antide Sitter radius and a variable Newton constant.The conjugate variables,central charge C and the chemical potential m,are introduced as a new pair of thermodynamic variables.We find that the iso-e-charge T-S curve becomes non-monotonic when Q<Q_(c).Correspondingly,the F-T curve exhibits a swallow tail structure.This behavior is considered as a van der Waals-like phase transition.As the value of b related to the energy density of Kiselev’s fluid becomes larger,the critical temperature T_(c)will decrease.Thus,the van derWaals-like phase transition will occur at lower temperature.There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage T-S process.There exist a maximum and a Hawking-Page phase transition points in theμ-C plane.As the value of b related to Kiselev’s fluid becomes larger,the Hawking-Page phase transition will occur at lower temperature in the isovoltageμ-T process.For other values of the state parameterω,there also exists van der Waals-like phase transition.展开更多
BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to i...BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to isolate and reduce the sensory stimulation to safeguard the patient and those within the vicinity.Using interventions by way of virtual reality(VR)could assist with reducing the need for RPs as it could help reduce anxiety or agitation by way of placing users into realistic and immersive environments.This could also aid staff to and change current RPs.AIM To assess the feasibility and effectiveness of using a VR platform to provide reduction in RP training.METHODS A randomised controlled feasibility study,accompanied by evaluations at 1 month and 6 months,was conducted within inpatient psychiatric wards at Southern Health National Health Service Foundation Trust,United Kingdom.Virti VR scenarios were used on VR headsets to provide training on reducing RPs in 3 inpatient psychiatric wards.Outcome measures included general self-efficacy scale,generalised anxiety disorder assessment 7(GAD-7),Burnout Assessment Tool 12,the Everyday Discrimination Scale,and the Compassionate Engagement and Action Scale.RESULTS Findings revealed statistically significant differences between the VR and treatment as usual groups,in the Everyday Discrimination Scale items Q8 and Q9:P=0.023 and P=0.040 respectively,indicating higher levels of perceived discrimination in the VR group.There were no significant differences between groups in terms of general self-efficacy,generalised anxiety disorder assessment 9,and Burnout Assessment Tool 12 scores.A significant difference was observed within the VR group for compassionate engagement from others(P=0.005)over time.Most respondents recorded System Usability Scale scores above 70,with an average score of 71.79.There was a significant reduction in rates of RPs in the VR group vs treatment as usual group with a fluctuating variability observed in the VR group likely due to external factors not captured in the study.CONCLUSION Ongoing advancement of VR technology enables the possibility of creating scenarios and simulations tailored to healthcare environments that empower staff by providing more comprehensive and effective training for handling situations.展开更多
Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed ...Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.展开更多
BACKGROUND Gestational diabetes mellitus(GDM)is a special type of diabetes that commonly occurs in women during pregnancy and involves impaired glucose tolerance and abnormal glucose metabolism;GDM is diagnosed for th...BACKGROUND Gestational diabetes mellitus(GDM)is a special type of diabetes that commonly occurs in women during pregnancy and involves impaired glucose tolerance and abnormal glucose metabolism;GDM is diagnosed for the first time during pregnancy and can affect fetal growth and development.AIM To investigate the associations of serum D-dimer(D-D)and glycosylated hemoglobin(HbA1c)levels with third-trimester fetal growth restriction(FGR)in GDM patients.METHODS The clinical data of 164 pregnant women who were diagnosed with GDM and delivered at the Obstetrics and Gynecology Hospital of Fudan University from January 2021 to January 2023 were analyzed retrospectively.Among these women,63 whose fetuses had FGR were included in the FGR group,and 101 women whose fetuses had normal body weights were included in the normal body weight group(normal group).Fasting venous blood samples were collected from the elbow at 28-30 wk gestation and 1-3 d before delivery to measure serum D-D and HbA1c levels for comparative analysis.The diagnostic value of serum D-D and HbA1c levels for FGR was evaluated by receiver operating characteristic analysis,and the influencing factors of third-trimester FGR in GDM patients were analyzed by logistic regression.RESULTS Serum fasting blood glucose,fasting insulin,D-D and HbA1c levels were significantly greater in the FGR group than in the normal group,while the homeostasis model assessment of insulin resistance values were lower(P<0.05).Regarding the diagnosis of FGR based on serum D-D and HbA1c levels,the areas under the curves(AUCs)were 0.826 and 0.848,the cutoff values were 3.04 mg/L and 5.80%,the sensitivities were 81.0%and 79.4%,and the specificities were 88.1%and 87.1%,respectively.The AUC of serum D-D plus HbA1c levels for diagnosing FGR was 0.928,and the sensitivity and specificity were 84.1%and 91.1%,respectively.High D-D and HbA1c levels were risk factors for third-trimester FGR in GDM patients(P<0.05).CONCLUSION D-D and HbA1c levels can indicate the occurrence of FGR in GDM patients in the third trimester of pregnancy to some extent,and their combination can be used as an important index for the early prediction of FGR.展开更多
Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network g...Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.展开更多
BACKGROUND The advent of coronavirus disease 2019(COVID-19)unveiled the worst national blood crisis that the United States had witnessed in over a decade.With the pandemic influencing the different stages of the acqui...BACKGROUND The advent of coronavirus disease 2019(COVID-19)unveiled the worst national blood crisis that the United States had witnessed in over a decade.With the pandemic influencing the different stages of the acquisition of blood products outside the hospital setting,we aimed to explore the possible barriers contributing to the shortage of blood products within the medical community.the COVID era and pre-COVID era.METHODS We conducted a retrospective cross-sectional study on hospitalized patients distinguishing the pattern of blood transfusion during the COVID and pre-COVID era in a community hospital.Data was tabulated to include the number of red blood cell(RBC)transfusions and if transfusions met restrictive blood transfusion criteria as per institutional guidelines.Chi-square was applied to test the statistical association between qualitative variables.Unpaired t test and Mann Whitney U test were applied respectively to test the mean difference of quantitative variables.RESULTS A total of 208 patients were included in the study,of which 108 were during COVID era and 100 were during pre-COVID era.The leading reason for admission in both the COVID era and pre-COVID era transfused patients was shortness of breath(53.7%and 36%P=0.001),followed by gastrointestinal bleeding(25.9%and 21%P=0.001).There was a higher percentage of RBC transfusions in the intensive care unit in the COVID-era group than in the pre-COVID era group(38.9%vs 22%,P=0.008).The restrictive transfusion criteria were met in 62%vs 79%in the COVID and pre-COVID eras,respectively(P=0.008).CONCLUSION The COVID-era group received RBC transfusions with less stringent adherence to restrictive blood transfusion practices in comparison to pre-COVID era group.展开更多
Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis wh...Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis which has been implicated in many diseases state including non-communicable diseases. To achieve this, seven diets were formulated by restricting 60% of each macronutrient. These diets were fed on 42 albino rats (Wistar), divided into 7 groups of 6 rats each. Group 1 was fed on a normal laboratory chow diet (ND), group 2 received a fat-restricted diet (FRD), group 3 received a protein-restricted diet, (PFD), group 4 received a carbohydrate-restricted diet (CRD), group 5 received a protein and fat-restricted diet (PFRD), group 6 re-ceived a carbohydrate and fat-restricted diet (CFRD) and group 7 received a carbohydrate and protein-restricted diet (CPRD). Feed and water intake were given ad libitum and daily weight and food intake were recorded. The experiment went on for 4 weeks after which animals were sacrificed and intestinal content and blood were collected for analysis (gut microbial composition, glucose, insulin levels, serum lipid, and enzyme). Compared to the control group results showed a decrease in Bacteroides (40.50 - 14.00 CFU), HDL (68.20 - 40.40 mg/dl), and AST (66.62 - 64.74 U/L) in FRD. An increase in AST (66.6 - 69.43 U/L), Bifidobacterial (59.50 - 92.00 CFU) and decreased Bacteroides (40.5 - 19.5 CFU) for PRD was also recorded. CRD reduced Lactobacillus (73 - 33.5 CFU), total bacterial count (129 - 48 CFU), HDL (68.2 - 30.8 mg/dl), and cholesterol (121.44 - 88.65 mg/dl) whereas intestinal composition of E. coli (30.5 - 51.5 CFU) increased. PFRD increased Lactobacillus (73.00 - 102.5 CFU), Bifidobacterial (59.5 - 100 CFU), HDL (68.2 - 74.7 mg/dl), and Triglyceride (111.67 - 146.67 mg/dl) concentration. Meanwhile, a reduction in Bifidobacterial (59.5 - 41.5 CFU), and an increasing of AST (66.62 - 70.30 U/l) were recorded for CFRD. However, Bacteroides (40.5 69.5 CFU), LDL (30.95 - 41.98 mg/dl) increased and Bifidobacterial (59.5 - 38.00 CFU) and HDL (68.2 - 53.5 mg/dl) decreased for CPRD. This work, therefore, concludes that macronutrient restriction causes significant changes in serum marker and enzyme profile, and gut microbial composition which can cause gut dysbiosis and later on could expose the host to inflammatory diseases in the long run.展开更多
In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which we...In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
基金supported by the Start-up Fund for new faculty from the Hong Kong Polytechnic University(PolyU)(A0043215)(to SA)the General Research Fund and Research Impact Fund from the Hong Kong Research Grants Council(15106018,R5032-18)(to DYT)+1 种基金the Research Center for SHARP Vision in PolyU(P0045843)(to SA)the InnoHK scheme from the Hong Kong Special Administrative Region Government(to DYT).
文摘Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects.
基金supported by the National Natural Science Foundation of China,Nos.82071426,81873784Clinical Cohort Construction Program of Peking University Third Hospital,No.BYSYDL2019002(all to DF)。
文摘Amyotrophic lateral sclerosis is a rare neurodegenerative disease characterized by the involvement of both upper and lower motor neurons.Early bilateral limb involvement significantly affects patients'daily lives and may lead them to be confined to bed.However,the effect of upper and lower motor neuron impairment and other risk factors on bilateral limb involvement is unclear.To address this issue,we retrospectively collected data from 586 amyotrophic lateral sclerosis patients with limb onset diagnosed at Peking University Third Hospital between January 2020 and May 2022.A univariate analysis revealed no significant differences in the time intervals of spread in different directions between individuals with upper motor neuron-dominant amyotrophic lateral sclerosis and those with classic amyotrophic lateral sclerosis.We used causal directed acyclic graphs for risk factor determination and Cox proportional hazards models to investigate the association between the duration of bilateral limb involvement and clinical baseline characteristics in amyotrophic lateral sclerosis patients.Multiple factor analyses revealed that higher upper motor neuron scores(hazard ratio[HR]=1.05,95%confidence interval[CI]=1.01–1.09,P=0.018),onset in the left limb(HR=0.72,95%CI=0.58–0.89,P=0.002),and a horizontal pattern of progression(HR=0.46,95%CI=0.37–0.58,P<0.001)were risk factors for a shorter interval until bilateral limb involvement.The results demonstrated that a greater degree of upper motor neuron involvement might cause contralateral limb involvement to progress more quickly in limb-onset amyotrophic lateral sclerosis patients.These findings may improve the management of amyotrophic lateral sclerosis patients with limb onset and the prediction of patient prognosis.
基金This work was supported by Sichuan Provincial Science Fund for Distinguished Young Scholars(Grant No.2020JDJQ0041)CARS-35 and Sichuan Key Science and Technology Project(NO.2021ZDZX0009).
文摘Background Intrauterine growth retardation(IUGR)affects intestinal growth,morphology,and function,which leads to poor growth performance and high mortality.The present study explored whether maternal dietary methyl donor(MET)supplementation alleviates IUGR and enhances offspring’s growth performance by improving intestinal growth,function,and DNA methylation of the ileum in a porcine IUGR model.Methods Forty multiparous sows were allocated to the control or MET diet groups from mating until delivery.After farrowing,8 pairs of IUGR and normal birth weight piglets from 8 litters were selected for sampling before suckling colostrum.Results The results showed that maternal MET supplementation tended to decrease the IUGR incidence and increased the average weaning weight of piglets.Moreover,maternal MET supplementation significantly reduced the plasma concentrations of isoleucine,cysteine,urea,and total amino acids in sows and newborn pig-lets.It also increased lactase and sucrase activity in the jejunum of newborn piglets.MET addition resulted in lower ileal methionine synthase activity and increased betaine homocysteine S-methyltransferase activity in the ileum of newborn piglets.DNA methylation analysis of the ileum showed that MET supplementation increased the methyla-tion level of DNA CpG sites in the ileum of newborn piglets.Down-regulated differentially methylated genes were enriched in folic acid binding,insulin receptor signaling pathway,and endothelial cell proliferation.In contrast,up-regulated methylated genes were enriched in growth hormone receptor signaling pathway and nitric oxide biosyn-thetic process.Conclusions Maternal MET supplementation can reduce the incidence of IUGR and increase the weaning litter weight of piglets,which may be associated with better intestinal function and methylation status.
基金supported by a grant provided by the Coordenacao de Aperfeicoamento de Pessoal de Nível Superior-Brazil-Finance Code 001 and National Council for Scientific and Technological Developmentfinanced in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior-Brasil--Finance Code 001funded by the Fundacao de Apoio à Pesquisa do Distrito Federal with grants from demanda espontanea-Edital 09/2022
文摘Background:Hemodialysis(HD) per se is a risk factor for thrombosis.Considering the growing body of evidence on blood-flow restriction(BFR) exercise in HD patients,identification of possible risk factors related to the prothrombotic agent D-dimer is required for the safety and feasibility of this training model.The aim of the present study was to identify risk factors associated with higher D-dimer levels and to determine the acute effect of resistance exercise(RE) with BFR on this molecule.Methods:Two hundred and six HD patients volunteered for this study(all with a glomerular filtration rate of <15 mL/min/1.73 m2).The RE+BFR session consisted of 50% arterial occlusion pressure during 50 min sessions of HD(intradialytic exercise).RE repetitions included concentric and eccentric lifting phases(each lasting 2 s) and were supervised by a strength and conditioning specialist.Results:Several variables were associated with elevated levels of D-dimer,including higher blood glucose,citrate use,recent cardiovascular events,recent intercurrents,higher inflammatory status,catheter as vascular access,older patients(>70 years old),and HD vintage.Furthermore,RE+BFR significantly increases D-dimer after 4 h.Patients with borderline baseline D-dimer levels(400-490 ng/mL) displayed increased risk of elevating D-dimer over the normal range(≥500 ng/mL).Conclusion:These results identified factors associated with a heightened prothrombotic state and may assist in the screening process for HD patients who wish to undergo RE+BFR.D-dimer and/or other fibrinolysis factors should be assessed at baseline and throughout the protocol as a precautionary measure to maximize safety during RE+BFR.
基金the support of the National Natural Science Foundation of China(Grant No.62076204)the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University(Grant No.CX2020019)in part by the China Postdoctoral Science Foundation(Grants No.2021M700337)。
文摘Improvement of integrated battlefield situational awareness in complex environments involving dynamic factors such as restricted communications and electromagnetic interference(EMI)has become a contentious research problem.In certain mission environments,due to the impact of many interference sources on real-time communication or mission requirements such as the need to implement communication regulations,the mission stages are represented as a dynamic combination of several communication-available and communication-unavailable stages.Furthermore,the data interaction between unmanned aerial vehicles(UAVs)can only be performed in specific communication-available stages.Traditional cooperative search algorithms cannot handle such situations well.To solve this problem,this study constructed a distributed model predictive control(DMPC)architecture for a collaborative control of UAVs and used the Voronoi diagram generation method to re-plan the search areas of all UAVs in real time to avoid repetition of search areas and UAV collisions while improving the search efficiency and safety factor.An attention mechanism ant-colony optimization(AACO)algorithm is proposed for UAV search-control decision planning.The search strategy is adaptively updated by introducing an attention mechanism for regular instruction information,a priori information,and emergent information of the mission to satisfy different search expectations to the maximum extent.Simulation results show that the proposed algorithm achieves better search performance than traditional algorithms in restricted communication constraint scenarios.
基金supported by the fund for the National 14th Five-Year Plan Key Research and Development Program(2021YFD1600702)XPCC Agricultural Science and Technology Innovation Project(NCG202232)the Top Talents Award Plan of Yangzhou University(2020)。
文摘Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine model of pregnancy.We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta,oxidative stress,inflammatory responses,autophagy and endoplasmic reticulum stress(ERS).However,precise mechanisms underlying the BPA-induced placental dysfunction,and subsequently,FGR,as well as the potential involvement of placental ERS in these complications,remain to be investigated.Methods In vivo experiment,16 twin-pregnant(from d 40 to 130 of gestation)Hu ewes were randomly distributed into two groups(8 ewes each).One group served as a control and received corn oil once a day,whereas the other group received BPA(5 mg/kg/d as a subcutaneous injection).In vitro study,ovine trophoblast cells(OTCs)were exposed to 4 treatments,6 replicates each.The OTCs were treated with 400μmol/L BPA,400μmol/L BPA+0.5μg/m L tunicamycin(Tm;ERS activator),400μmol/L BPA+1μmol/L 4-phenyl butyric acid(4-PBA;ERS antagonist)and DMEM/F12 complete medium(control),for 24 h.Results In vivo experiments,pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency,progesterone(P4)level and fetal weight,and an increase in placental estrogen(E2)level,together with barrier dysfunctions,OS,inflammatory responses,autophagy and ERS in type A cotyledons.In vitro experiment,the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy,ERS,pro-apoptosis and inflammatory response,and a decrease in the P4 level and the related protein and gene expressions of antioxidant,anti-apoptosis and barrier function.Moreover,treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine(the increased E2 level and decreased P4 level),OS,inflammatory responses,autophagy,and ERS.However,treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above.Conclusions In general,the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs,and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine,OS,inflammatory responses,and autophagy.These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin diseases (NIAMS)of NIH under Award Number R01 AR069562 and AR073156 (to K.H.P.-M.)by the National Research Foundation of Korea NRF2020R1A6A3A03037133 (to H.K.)+1 种基金by the support for the Rosensweig Genomics Center from The Tow Foundation,and by R03 AR068118 (to L.D.)NIH/NCI Cancer Center Support Grant P30 CA008748 (to L.D.)。
文摘Osteoclasts are multinucleated bone-resorbing cells,and their formation is tightly regulated to prevent excessive bone loss.However,the mechanisms by which osteoclast formation is restricted remain incompletely determined.Here,we found that sterol regulatory element binding protein 2(SREBP2)functions as a negative regulator of osteoclast formation and inflammatory bone loss.Cholesterols and SREBP2,a key transcription factor for cholesterol biosynthesis,increased in the late phase of osteoclastogenesis.
基金supported by the National Natural Science Foundation of China(32471186,31771318)the 14th Five-Year-Plan Advantageous and Characteristic Disciplines(Groups)of Colleges and Universities in Hubei Province for Exercise and Brain Science from Hubei Provincial Department of Education,and the Leading Talent Program Foundation from Wuhan Sports University to Ning Chen+3 种基金and the National Natural Science Foundation of China(81701391)the Natural Science Foundation of Hubei Province(2023AFB700)Key Project of Scientific Research of Education Department of Hubei Province(D20234101)Young and Middle aged Scientific Research Team Project of Wuhan Sports University(21KT08)to Jingjing Fan.
文摘Obesity,caused by excessive energy,leads to body weight gain and various diseases,including cognitive impairment.Current studies suggest that diet restriction such as optimal fasting and regular exercise are crucial for improving cognitive capacity.However,further exploration is needed to understand the specific mechanisms of high fat diet(HFD)-induced cognitive decline in obesity.In the present study,4-month-old mice were subjected to HFD feeding for 18 weeks,followed by aerobic exercise and high-intensity intermittent exercise,regular diet feeding,and intermittent fasting for 8 weeks,and then used to evaluate cognitive capacity,inflammation,compromised insulin signaling pathway,and apoptosis in hippocampal tissue,as well as AMPK/SIRT1 and TLR4 signal pathways.Obese mice revealed impaired cognitive capacity as compared with mice fed with regular diets.In contrast,aerobic exercise,high-intensity intermittent exercise,regular diet,and intermittent fasting could inhibit apoptosis caused by inflammation-mediated compromised insulin signaling pathway in hippocampal tissues through activating the AMPK/SIRT1 signal pathway and suppressing the TLR4 signal pathway,thereby rescuing the cognitive impairment of obese mice.Therefore,diet restriction and exercise interventions may play a positive role in reverting obesity-induced cognitive impairment.
基金supported by the 12th Five-Year Plan for Science and Technology Development of China(2012BAD33B05).
文摘Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy.
文摘At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.
基金supported by the National Natural Science Foundation of China(Grant Nos.12373022 and U1731107).
文摘We study thermodynamics of charged AdS black hole surrounded by quintessence in a new formalism which is called the restricted phase space thermodynamics.This context is based on Visser’s holographic thermodynamics with a fixed antide Sitter radius and a variable Newton constant.The conjugate variables,central charge C and the chemical potential m,are introduced as a new pair of thermodynamic variables.We find that the iso-e-charge T-S curve becomes non-monotonic when Q<Q_(c).Correspondingly,the F-T curve exhibits a swallow tail structure.This behavior is considered as a van der Waals-like phase transition.As the value of b related to the energy density of Kiselev’s fluid becomes larger,the critical temperature T_(c)will decrease.Thus,the van derWaals-like phase transition will occur at lower temperature.There is always a non-quilibrium transition from a small unstable black hole to a large stable black hole state in the isocoltage T-S process.There exist a maximum and a Hawking-Page phase transition points in theμ-C plane.As the value of b related to Kiselev’s fluid becomes larger,the Hawking-Page phase transition will occur at lower temperature in the isovoltageμ-T process.For other values of the state parameterω,there also exists van der Waals-like phase transition.
文摘BACKGROUND Restrictive practices(RPs)are defined by measures linked to physical and chemical restraints to reduce the movement or control behaviours during any emergency.Seclusion is an equal part of RPs intended to isolate and reduce the sensory stimulation to safeguard the patient and those within the vicinity.Using interventions by way of virtual reality(VR)could assist with reducing the need for RPs as it could help reduce anxiety or agitation by way of placing users into realistic and immersive environments.This could also aid staff to and change current RPs.AIM To assess the feasibility and effectiveness of using a VR platform to provide reduction in RP training.METHODS A randomised controlled feasibility study,accompanied by evaluations at 1 month and 6 months,was conducted within inpatient psychiatric wards at Southern Health National Health Service Foundation Trust,United Kingdom.Virti VR scenarios were used on VR headsets to provide training on reducing RPs in 3 inpatient psychiatric wards.Outcome measures included general self-efficacy scale,generalised anxiety disorder assessment 7(GAD-7),Burnout Assessment Tool 12,the Everyday Discrimination Scale,and the Compassionate Engagement and Action Scale.RESULTS Findings revealed statistically significant differences between the VR and treatment as usual groups,in the Everyday Discrimination Scale items Q8 and Q9:P=0.023 and P=0.040 respectively,indicating higher levels of perceived discrimination in the VR group.There were no significant differences between groups in terms of general self-efficacy,generalised anxiety disorder assessment 9,and Burnout Assessment Tool 12 scores.A significant difference was observed within the VR group for compassionate engagement from others(P=0.005)over time.Most respondents recorded System Usability Scale scores above 70,with an average score of 71.79.There was a significant reduction in rates of RPs in the VR group vs treatment as usual group with a fluctuating variability observed in the VR group likely due to external factors not captured in the study.CONCLUSION Ongoing advancement of VR technology enables the possibility of creating scenarios and simulations tailored to healthcare environments that empower staff by providing more comprehensive and effective training for handling situations.
基金supported by the Postdoctoral Research Funds of Hebei Medical University(30705010016-3759)Natural Science Foundation of China(32272328)+4 种基金Natural Science Foundation of Hebei Province(B2022321001)National Key Research Project of Hebei Province(20375502D)Postdoctoral Research Project of Hebei Province(B2022003031)Science and Technology Research Program of Hebei Provincial Colleges(QN2023229)Hebei Provincial Key Laboratory of Nutrition and Health(2023YDYY-KF05)。
文摘Intermittent fasting can benefit breast cancer patients undergoing chemotherapy or immunotherapy.However,it is still uncertain how to select immunotherapy drugs to combine with intermittent fasting.Herein we observed that two cycles of fasting treatment significantly inhibited breast tumor growth and lung tissue metastasis,as well as prolonged overall survival in mice bearing 4T1 and 4T07 breast cancer.During this process,both the immunosuppressive monocytic-(M-)and granulocytic-(G-)myeloid-derived suppressor cell(MDSC)decreased,accompanied by an increase in interleukin(IL)7R^(+)and granzyme B^(+)T cells in the tumor microenvironment.Interestingly,we observed that Ly6G^(low)G-MDSC sharply decreased after fasting treatment,and the cell surface markers and protein mass spectrometry data showed potential therapeutic targets.Mechanistic investigation revealed that glucose metabolism restriction suppressed the splenic granulocytemonocyte progenitor and the generation of colony-stimulating factors and IL-6,which both contributed to the accumulation of G-MDSC.On the other hand,glucose metabolism restriction can directly induce the apoptosis of Ly6G^(low)G-MDSC,but not Ly6G^(high)subsets.In summary,these results suggest that glucose metabolism restriction induced by fasting treatment attenuates the immune-suppressive milieu and enhances the activation of CD3^(+)T cells,providing potential solutions for enhancing immune-based cancer interventions.
文摘BACKGROUND Gestational diabetes mellitus(GDM)is a special type of diabetes that commonly occurs in women during pregnancy and involves impaired glucose tolerance and abnormal glucose metabolism;GDM is diagnosed for the first time during pregnancy and can affect fetal growth and development.AIM To investigate the associations of serum D-dimer(D-D)and glycosylated hemoglobin(HbA1c)levels with third-trimester fetal growth restriction(FGR)in GDM patients.METHODS The clinical data of 164 pregnant women who were diagnosed with GDM and delivered at the Obstetrics and Gynecology Hospital of Fudan University from January 2021 to January 2023 were analyzed retrospectively.Among these women,63 whose fetuses had FGR were included in the FGR group,and 101 women whose fetuses had normal body weights were included in the normal body weight group(normal group).Fasting venous blood samples were collected from the elbow at 28-30 wk gestation and 1-3 d before delivery to measure serum D-D and HbA1c levels for comparative analysis.The diagnostic value of serum D-D and HbA1c levels for FGR was evaluated by receiver operating characteristic analysis,and the influencing factors of third-trimester FGR in GDM patients were analyzed by logistic regression.RESULTS Serum fasting blood glucose,fasting insulin,D-D and HbA1c levels were significantly greater in the FGR group than in the normal group,while the homeostasis model assessment of insulin resistance values were lower(P<0.05).Regarding the diagnosis of FGR based on serum D-D and HbA1c levels,the areas under the curves(AUCs)were 0.826 and 0.848,the cutoff values were 3.04 mg/L and 5.80%,the sensitivities were 81.0%and 79.4%,and the specificities were 88.1%and 87.1%,respectively.The AUC of serum D-D plus HbA1c levels for diagnosing FGR was 0.928,and the sensitivity and specificity were 84.1%and 91.1%,respectively.High D-D and HbA1c levels were risk factors for third-trimester FGR in GDM patients(P<0.05).CONCLUSION D-D and HbA1c levels can indicate the occurrence of FGR in GDM patients in the third trimester of pregnancy to some extent,and their combination can be used as an important index for the early prediction of FGR.
基金This work was financially supported by the grants from the National Key Research and Development Program of China(2021YFF1001204,2021YFD1201602)the MOE 111 Project(B08025)+2 种基金the MOA CARS-04 program,the Program of Jiangsu province(JBGS-2021-014)the Guangxi Scientific Research and Technology Development Plan(14125008-2-16)the Guidance Foundation of Sanya Institute of Nanjing Agricultural University(NAUSY-ZZ02,NAUSY-MS05).
文摘Shade tolerance is essential for soybeans in inter/relay cropping systems.A genome-wide association study(GWAS)integrated with transcriptome sequencing was performed to identify genes and construct a genetic network governing the trait in a set of recombinant inbred lines derived from two soybean parents with contrasting shade tolerance.An improved GWAS procedure,restricted two-stage multi-locus genome-wide association study based on gene/allele sequence markers(GASM-RTM-GWAS),identified 140 genes and their alleles associated with shade-tolerance index(STI),146 with relative pith cell length(RCL),and nine with both.Annotation of these genes by biological categories allowed the construction of a protein–protein interaction network by 187 genes,of which half were differentially expressed under shading and non-shading conditions as well as at different growth stages.From the identified genes,three ones jointly identified for both traits by both GWAS and transcriptome and two genes with maximum links were chosen as beginners for entrance into the network.Altogether,both STI and RCL gene systems worked for shade-tolerance with genes interacted each other,this confirmed that shadetolerance is regulated by more than single group of interacted genes,involving multiple biological functions as a gene network.
文摘BACKGROUND The advent of coronavirus disease 2019(COVID-19)unveiled the worst national blood crisis that the United States had witnessed in over a decade.With the pandemic influencing the different stages of the acquisition of blood products outside the hospital setting,we aimed to explore the possible barriers contributing to the shortage of blood products within the medical community.the COVID era and pre-COVID era.METHODS We conducted a retrospective cross-sectional study on hospitalized patients distinguishing the pattern of blood transfusion during the COVID and pre-COVID era in a community hospital.Data was tabulated to include the number of red blood cell(RBC)transfusions and if transfusions met restrictive blood transfusion criteria as per institutional guidelines.Chi-square was applied to test the statistical association between qualitative variables.Unpaired t test and Mann Whitney U test were applied respectively to test the mean difference of quantitative variables.RESULTS A total of 208 patients were included in the study,of which 108 were during COVID era and 100 were during pre-COVID era.The leading reason for admission in both the COVID era and pre-COVID era transfused patients was shortness of breath(53.7%and 36%P=0.001),followed by gastrointestinal bleeding(25.9%and 21%P=0.001).There was a higher percentage of RBC transfusions in the intensive care unit in the COVID-era group than in the pre-COVID era group(38.9%vs 22%,P=0.008).The restrictive transfusion criteria were met in 62%vs 79%in the COVID and pre-COVID eras,respectively(P=0.008).CONCLUSION The COVID-era group received RBC transfusions with less stringent adherence to restrictive blood transfusion practices in comparison to pre-COVID era group.
文摘Macronutrients serve as a source of energy for both gut microbiota and its host. An increase or decrease in macronutrients can either increase or decrease the composition of gut microbiota, leading to gut dysbiosis which has been implicated in many diseases state including non-communicable diseases. To achieve this, seven diets were formulated by restricting 60% of each macronutrient. These diets were fed on 42 albino rats (Wistar), divided into 7 groups of 6 rats each. Group 1 was fed on a normal laboratory chow diet (ND), group 2 received a fat-restricted diet (FRD), group 3 received a protein-restricted diet, (PFD), group 4 received a carbohydrate-restricted diet (CRD), group 5 received a protein and fat-restricted diet (PFRD), group 6 re-ceived a carbohydrate and fat-restricted diet (CFRD) and group 7 received a carbohydrate and protein-restricted diet (CPRD). Feed and water intake were given ad libitum and daily weight and food intake were recorded. The experiment went on for 4 weeks after which animals were sacrificed and intestinal content and blood were collected for analysis (gut microbial composition, glucose, insulin levels, serum lipid, and enzyme). Compared to the control group results showed a decrease in Bacteroides (40.50 - 14.00 CFU), HDL (68.20 - 40.40 mg/dl), and AST (66.62 - 64.74 U/L) in FRD. An increase in AST (66.6 - 69.43 U/L), Bifidobacterial (59.50 - 92.00 CFU) and decreased Bacteroides (40.5 - 19.5 CFU) for PRD was also recorded. CRD reduced Lactobacillus (73 - 33.5 CFU), total bacterial count (129 - 48 CFU), HDL (68.2 - 30.8 mg/dl), and cholesterol (121.44 - 88.65 mg/dl) whereas intestinal composition of E. coli (30.5 - 51.5 CFU) increased. PFRD increased Lactobacillus (73.00 - 102.5 CFU), Bifidobacterial (59.5 - 100 CFU), HDL (68.2 - 74.7 mg/dl), and Triglyceride (111.67 - 146.67 mg/dl) concentration. Meanwhile, a reduction in Bifidobacterial (59.5 - 41.5 CFU), and an increasing of AST (66.62 - 70.30 U/l) were recorded for CFRD. However, Bacteroides (40.5 69.5 CFU), LDL (30.95 - 41.98 mg/dl) increased and Bifidobacterial (59.5 - 38.00 CFU) and HDL (68.2 - 53.5 mg/dl) decreased for CPRD. This work, therefore, concludes that macronutrient restriction causes significant changes in serum marker and enzyme profile, and gut microbial composition which can cause gut dysbiosis and later on could expose the host to inflammatory diseases in the long run.
文摘In this paper, the generalized oscillator strengths (GOSs) of excitations of atomic sodium from ground state to 2p63s0 (3p, 4p, 5p, 6p) states, immersed in Debye plasma, were calculated by using wavefunctions which were obtained numerically from the restricted Hartree-Fock (RHF) equation. This RHF equation employs the local density approach for exchange interactions including plasma Debye screening. Theoretical RHF and random phase approximation with exchange (RPAE) velocity calculations have shown that the GOSs for excitations to 3 s0(3 p,4 p,5 p,6 p)depend on the plasma Debye screening effects, as shown by the reduction in the GOS amplitude with decreasing Debye length λD. The agreement between the present RPAE V results for the transitions 3 s→3 s0(3 p,4 p,5 p)and the length calculations of Martínez-Flores was satisfactory. Correlation effects were found quite to be significant in the vicinity of the maxima of the GOS of the 3 s→3 s0(4 p,5 p,6 p)excitations by using the RPAE V approach. We note the poor influence of many electron correlations on the GOS of (3 s→3 p)transition with the same principal quantum number. Finally, we comment that the RPAE V calculations are useful in investigating electron correlation effects on the transition GOS of atomic sodium planted in Debye plasma. The present velocity results also reveal that the 3 s→3 s0(5p, 6p)transition GOSs tend to be delocalized due to more significant screening effects at Debye lengths λD=20and 30 a.u. for excited subshells 5p and 6p, respectively. We report here novel results of GOS for 3 s→3 s06ptransition obtained from different Debye lengths.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.