In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength con...In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.展开更多
A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the...A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.展开更多
文摘In the last few decades, prestressed concrete has been rapidly used in bridge engineering due to the enormous development in the construction techniques and the increasing need for long span bridges. High strength concrete has been also more widely spread than the past. It currently becomes more desirable as it has better mechanical properties and durability performance. Major defect of fully prestressed concrete is its low ductility;it may produce less alarming signs than ordinary reinforced concrete via smaller deflection and limited cracking. Therefore, partially prestressing is considered an intermediate design between the two extremes. So, combining high strength concrete with partial prestressing will result in a considerable development in the use of prestressed concrete structures regarding the economical and durability view points. This study presents the results of seven partially prestressed high strength concrete beams in flexure. The tested beams are used to investigate the influence of concrete compressive strength, prestressing steel ratio and flange width on the behavior of partially prestressed beams. The experimentally observed behaviors of all beams were presented in terms of the cracking load, ultimate load, deflection, cracking behavior and failure modes.
文摘A study on fatigue behavior of unbonded partially prestressed concrete beams is presented. Model tests have been carried out in static loading and cyclic compressive loading on 15 beams with flexure. The ratios of the lower limit to the upper limit of fatigue load are 0.5 and 0.3 respectively, and the frequencies of cyclic loading are 8 Hz and 4.5 Hz respectively. The experimental results of the strains of the concrete and steel bars, the deflection of test beams, and the crack width of normal section are analyzed. According to statistics and analysis of test results, the corresponding calculation models are developed and presented.