期刊文献+
共找到601篇文章
< 1 2 31 >
每页显示 20 50 100
Design of broad angular phase retarders for the complete polarization analysis of extreme ultraviolet radiation
1
作者 林承友 陈淑静 +1 位作者 陈朝阳 丁迎春 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期512-517,共6页
A method of designing broad angular phase retarders in the extreme ultraviolet (EUV) region is presented. The design is based on a standard Levenberg-Marquardt algorithm combined with a common merit function. Using ... A method of designing broad angular phase retarders in the extreme ultraviolet (EUV) region is presented. The design is based on a standard Levenberg-Marquardt algorithm combined with a common merit function. Using this method, a series of broad angular EUV phase retarders were designed using aperiodic Mo/Si multilayers. At photon energy of 90 eV, broad angular phase retarders with 30°, 60°, and 90° phase retardations have been realized in the angular range of 39°-51°. By analyzing and comparing the performances of the designed broad angular phase retarders, we found that the Mo/Si multilayer with more layers could obtain higher phase retardation in broader angular range when used to design the broad angular phase retarder. Broad angular phase retarders possess lower sensitivity toward changing incident angle compared with the traditional phase retarders designed with transmission periodic multilayers, and can be used for the polarization control of broad angular EUV sources. 展开更多
关键词 broad angular phase retarders extreme ultraviolet radiation polarization analysis
下载PDF
Sulfolane‑Based Flame‑Retardant Electrolyte for High‑Voltage Sodium‑Ion Batteries
2
作者 Xuanlong He Jie Peng +15 位作者 Qingyun Lin Meng Li Weibin Chen Pei Liu Tao Huang Zhencheng Huang Yuying Liu Jiaojiao Deng Shenghua Ye Xuming Yang Xiangzhong Ren Xiaoping Ouyang Jianhong Liu Biwei Xiao Jiangtao Hu Qianling Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期498-516,共19页
Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In p... Sodium-ion batteries hold great promise as next-generation energy storage systems.However,the high instability of the electrode/electrolyte interphase during cycling has seriously hindered the development of SIBs.In particular,an unstable cathode–electrolyte interphase(CEI)leads to successive electrolyte side reactions,transition metal leaching and rapid capacity decay,which tends to be exacerbated under high-voltage conditions.Therefore,constructing dense and stable CEIs are crucial for high-performance SIBs.This work reports localized high-concentration electrolyte by incorporating a highly oxidation-resistant sulfolane solvent with non-solvent diluent 1H,1H,5H-octafluoropentyl-1,1,2,2-tetrafluoroethyl ether,which exhibited excellent oxidative stability and was able to form thin,dense and homogeneous CEI.The excellent CEI enabled the O3-type layered oxide cathode NaNi_(1/3)Mn_(1/3)Fe_(1/3)O_(2)(NaNMF)to achieve stable cycling,with a capacity retention of 79.48%after 300 cycles at 1 C and 81.15%after 400 cycles at 2 C with a high charging voltage of 4.2 V.In addition,its nonflammable nature enhances the safety of SIBs.This work provides a viable pathway for the application of sulfolane-based electrolytes on SIBs and the design of next-generation high-voltage electrolytes. 展开更多
关键词 Sodium-ion batteries Sulfolane-based electrolyte High voltage Layered oxide cathode Flame retardant
下载PDF
Water medium retarders for heavy-duty vehicles:Computational fluid dynamics and experimental analysis of filling ratio control method 被引量:2
3
作者 郑宏鹏 雷雨龙 宋鹏翔 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第6期1067-1075,共9页
The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency... The water medium(WM) retarder is an auxiliary braking device that could convert the kinetic energy of the vehicle to the thermal energy of the coolant, and it is used instead of the service brake under non-emergency braking conditions. This paper analyzes the flow distribution based on a mathematical model and analyzes the key factors that could affect the filling ratio and the braking torque of the WM retarder. Computational fluid dynamics(CFD) simulations are conducted to compute the braking torque, and theresults are verified by experiments. It is shown that the filling ratio and the braking torque can be expressed by the mathematical model proposed in this paper. Compared with the Reynolds averaged Navier-Stokes(RANS) turbulent model, the shear stress transport(SST) turbulent model can more accurately simulate the braking torque. Finally, the flow distribution and the flow character in the WM retarders are analyzed. 展开更多
关键词 Heavy duty vehicle braking system water medium retarder computational fluid dynamics filling ratio control method
原文传递
Design of Constant-Speed Control Method for Water Medium Hydraulic Retarders Based on Neural Network PID 被引量:1
4
作者 Yulong Lei Pengxiang Song Yao Fu 《Automotive Innovation》 EI CSCD 2020年第2期147-157,共11页
The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert ... The water medium hydraulic retarder is the latest type of auxiliary braking device and has the characteristics of high power density,large braking torque,and compact structure.During traveling,this device can convert the kinetic energy of a vehicle to the heat energy of the cooling liquid and replace the service brake under non-emergency braking conditions.With regard to the constant-speed function of the water medium hydraulic retarder,this study designs a controller based on the neural network proportional-integral-derivative(PID)algorithm to achieve the steady traveling of the vehicle at constant velocity during a downhill course by controlling the filling ratio of the water medium hydraulic retarder.To validate the algorithm’s effectiveness,the dynamic model of the heavy-duty vehicle in the downhill process and the physical model of the water medium hydraulic retarder are developed.Three operating conditions,including a fixed slope,step-changing slope,and continuous changing slope,are set,and a simulation test is carried out in the MATLAB/Simulink environment.The neural network PID algorithm has better adaptability in controlling than the traditional PID algorithm.Thus,it controls the water medium hydraulic retarder such that the braking requirements of heavy-duty vehicles under a changing slope working condi-tion are satisfied,and it performs constant-speed control when the vehicle travels downhill.Therefore,the proposed control method can significantly improve the safety of road traffic. 展开更多
关键词 Water medium hydraulic retarder Filling ratio Neural network PID Constant-speed control
原文传递
Vapour retarders in wood frame walls and their effect on the drying capability
5
作者 Stig Geving Jonas Holme 《Frontiers of Architectural Research》 CSCD 2013年第1期42-49,共8页
Wood frame wails typically need a vapour barrier at the warm side to avoid interstitial condensation due to vapour diffusion and air leakages from the interior. A more vapour open material than the traditional vapour ... Wood frame wails typically need a vapour barrier at the warm side to avoid interstitial condensation due to vapour diffusion and air leakages from the interior. A more vapour open material than the traditional vapour barriers, here calted vapour retarder, could allow condensed moisture, buiLt-in-moisture or moisture from minor leakages to dry to the interior in addition to the outward drying. The application of permeable vapour retarders in wood frame wails have been investigated in this study by the use of a hygrothermat simulation tool. A traditional wood frame wail usually has good drying possibilities to the exterior. If a vapour retarder should have an effect on the total drying, it must not be too vapour tight. The purpose of this study was to find some threshold value for the maximum vapour resistance of a vapour retarder--when a requirement is that it should have a relatively large effect of the total drying of the wail. The increased risk for condensation as the vapour resistance decreases has however not been investigated in this study. In general it was found that permeable vapour barriers have retatively littte effect on the total drying of ordinary wood frame waits in a Nordic ctimate. 展开更多
关键词 Vapour barrier Vapour retarder Wood frame watt DRYING MOISTURE
原文传递
Superior and safer lithium sulfur batteries realized by robust polysulfides-retarding dam with high flame retardance 被引量:1
6
作者 Junling Wang Yanfang Cao +5 位作者 Zhirong Wang Yinquan Zhao Chuang He Fudong Zhao Chaoling Han Shui Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期471-486,I0011,共17页
The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow... The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs. 展开更多
关键词 Lithium-sulfur batteries Thermal safety Flame retardancy SEPARATOR
下载PDF
Preparation of Polyurea Elastomer with Flame Retardant, Insulation and Thermal Conductivity Properties
7
作者 方今 DONG Yang +3 位作者 LU Shangkai LIU Junbang AI Lianghui 刘平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期781-789,共9页
By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant p... By using 6,6-((sulfonylbis(4,1-phenylene)bis(azanediyl))bis(thiophen-2-ylm-ethylene))bis6H-di-benzo[c,e][1,2]oxaphosphinine 6-oxide(DOPO-N)as phosphorus-nitrogen flame retardant,the polyurea(PUA)with flame retardant properties(PUA/DOPO-N)was prepared.In addition,organically modified montmorillonite(OMMT)and magnesium hydroxide(MH)were used as co-effectors respectively,and the flame retardant PUA(PUA/DOPO-N/OMMT and PUA/DOPO-N/MH)were also prepared.Thermal properties,flame retardant properties,flame retardant mechanism and mechanical properties of PUA/DOPO-N,PUA/DOPO-N/OMMT and PUA/DOPO-N/MH were investigated by thermogravimetric(TG)analysis,limiting oxygen index(LOI),UL 94,cone calorimeter test,scanning electron microscopy(SEM),and tensile test.The results show that the LOI value of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are 27.1%,27.7%,and 28.3%,respectively,and UL 94 V-0 rating is attained.Compared with PUA,the peak heat release rate(pk-HRR),total heat release(THR)and average effective heat combustion(av-EHC)of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH decrease significantly.SEM results indicate that the residual chars of PUA/20%DOPO-N,PUA/18%DOPO-N/2%OMMT and PUA/15%DOPO-N/5%MH are completer and more compact.The complex of DOPO-N/OMMT and DOPO-N/MH have synergistic flame retardancy.The mechanical properties of PUA can be improved by the addition of DOPO-N,DOPO-N/OMMT and DOPO-N/MH,respectively.The insulation performance test shows that the volume resistivity of PUA/20%DOPO-N is 6.25×10^(16)Ω.cm.Furthermore,by using modified boron nitride(MBN)as heat dissipating material,the complex of PUA/MBN was prepared,and the thermal conductivity of PUA/MBN was investigated.The thermal conductivity of PUA/8%MBN complex coating at room temperature is 0.166 W/(M·K),which is a 163%improvement over pure PUA. 展开更多
关键词 POLYUREA organic flame retardant inorganic flame retardant synergistic flame retardancy INSULATION thermal conductivity
下载PDF
Effect of the Retarder on Initial Hydration and Mechanical Properties of the"one-step"Alkaliactivated Composite Cementitious Materials
8
作者 DING Rui HE Yue +3 位作者 LI Xingchen LI Han TIAN Hao WANG Hongen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1199-1213,共15页
This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly a... This paper studied the effects of different retarders on the performance of the"one-step"alkali-activated composite cementitious material(ACCM)which is composed of ground granulated blast slag(GGBS)and fly ash(FA),and analyzed its mechanical properties,hydration mechanism,and retardation mechanism.The effects of retarders on the hydration products,mechanical properties,and hydration kinetics of ACCM were investigated using XRD,SEM,FTIR,EDS,and thermoactive microcalorimetry.The results showed that Na_(2)B_(4)O_(7)·10H_(2)O(B)delayed the exotherm during the alkali activation process and could effectively delay the setting time of ACCM,but the mechanical properties were slightly decreased.The setting time of ACCM increased with the increase in SG content,but the mechanical properties of ACCM decreased with the increase in SG content.C1_(2)H_(22)O_(11)(CHO)could effectively delay the hydration reaction of ACCM and weakly enhanced the compressive strength.H_(3)PO_(4)(HP)at a concentration of 0.05 mol/L had a certain effect on ACCM retardation,but HP at a concentration of 0.07 and 0.09 mol/L had an effect of promoting the setting and hardening time of ACCM. 展开更多
关键词 "one-step"alkali-activated composite cementitious materials solid activator hydration mechanism RETARDER retarding mechanism
下载PDF
Boron nitride silicone rubber composite foam with low dielectric and high thermal conductivity
9
作者 Shuilai Qiu Hang Wu +1 位作者 Fukai Chu Lei Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期224-230,共7页
Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced b... Silicone rubber(SR)is widely used in the field of electronic packaging because of its low dielectric properties.In this work,the porosity of the SR was improved,and the dielectric constant of the SR foam was reduced by adding expanded microspheres(EM).Then,the thermal conductivity of the system was improved by combining the modified boron nitride(f-BN).The results showed that after the f-BN was added,the dielectric constant and dielectric loss were much lower than those of pure SR.Micron-sized modified boron nitride(f-mBN)improved the dielectric and thermal conductivity of the SR foam better than that of nano-sized modified boron nitride(f-nBN),but f-nBN improved the volume resistivity,tensile strength,and thermal stability of the SR better than f-mBN.When the mass ratio of f-mBN and fnBN is 2:1,the thermal conductivity of the SR foam reaches the maximum value of 0.808 W·m^(-1)·K^(-1),which is 6.5 times that before the addition.The heat release rate and fire growth index are the lowest,and the improvement in flame retardancy is mainly attributed to the high thermal stability and physical barrier of f-BN. 展开更多
关键词 Foam COMPOSITES Dielectric properties Thermal conductivity Mechanical properties Flame retardant
下载PDF
Novel multifunctional epoxy based graphitic carbon nitride/silanized TiO_(2)nanocomposite as protective coatings for steel surface against corrosion and flame in the shipping industry
10
作者 XAVIER Joseph Raj 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3394-3422,共29页
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ... The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry. 展开更多
关键词 graphitic carbon nitride nanocomposites flame retardant coating corrosion functional materials
下载PDF
Synthesis of Organic-Inorganic Hybrid Aluminum Hypophosphite Microspheres Flame Retardant and Its Flame Retardant Research on Thermoplastic Polyurethane
11
作者 刘生鹏 XU Zhi +5 位作者 ZHANG Xinyuan WEI Huan XIONG Yun DING Yigang HUANG Wenbo 许莉莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期221-233,共13页
Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of... Aluminum hypophosphite microspheres(AHP) were synthesized by hydrothermal method using NaH2PO2·H2O and AlCl3·6H2O as raw materials, and then the AHP microspheres were polymerized by surface polymerization of micro-nanospheres with cyclic cross-linked poly(cyclotriphosphazene-co-4,4'-sulfonyldiphenol)(PZS). A new organic-inorganic poly(phosphonitrile)-modified aluminum hypophosphite microspheres(PZS-AHP) were synthesized by encapsulation and applied to flame retardant thermoplastic polyurethane(TPU). The microstructure and chemical composition of the PZS-AHP microsphere were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray spectroscopy. The thermal stability of PZS-AHP microsphere was explored with thermogravimetric analysis. Thermogravimetric data indicate that the PZS-AHP microspheres have excellent thermal stability. The thermal and flame-retarding properties of the TPU composites were evaluated by thermogravimetric(TG), limited oxygen index tests(LOI), and cone calorimeter test(CCT). The TPU composite achieved vertical burning(UL-94) V-0 grade and LOI value reached 29.2% when 10 wt% PZS-AHP was incorporated. Compared with those of pure TPU, the peak heat release rate(pHRR) and total heat release(THR) of TPU/10%PZS-AHP decreased by 82.2% and 42.5%, respectively. The results of CCT indicated that PZS-AHP microsphere could improve the flame retardancy of TPU composites. 展开更多
关键词 POLYPHOSPHAZENE thermoplastic polyurethane flame retardancy aluminum hypophosphite surface polymerization
下载PDF
Numerical Simulation on Radon Retardation Behavior of Covering Floats in Radon-Containing Water
12
作者 LIU Shu Yuan ZHANG Li +1 位作者 YE Yong Jun DING Ku Ke 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第4期406-417,共12页
Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CF... Objective This study aimed to efficiently reduce the release of radon from water bodies to protect the environment.Methods Based on the sizes of the experimental setup and modular float,computational fluid dynamics(CFD)was used to assess the impact of the area coverage rate,immersion depth,diffusion coefficient,and radon transfer velocity at the gas–liquid interface on radon migration and exhalation of radon-containing water.Based on the numerical simulation results,an estimation model for the radon retardation rate was constructed.The effectiveness of the CFD simulation was evaluated by comparing the experimental and simulated variation values of the radon retardation rate with the coverage area rates.Results The effect of radon transfer velocity on radon retardation in water bodies was minor and insignificant according to the appropriate value;therefore,an estimation model of the radon retardation rate of the coverage of a radon-containing water body was constructed using the synergistic impacts of three factors:area coverage rate,immersion depth,and diffusion coefficient.The deviation between the experimental and simulated results was<4.3%.Conclusion Based on the numerical simulation conditions,an estimation model of the radon retardation rate of covering floats in water bodies under the synergistic effect of multiple factors was obtained,which provides a reference for designing covering floats for radon retardation in radoncontaining water. 展开更多
关键词 Radon-containing water Radon retardation rate CFD Coverage experiment Optimized design
下载PDF
Novel wood-plastic composite fabricated via modified steel slag:Preparation,mechanical and flammability properties
13
作者 Ling Zhao Kai Zhao +4 位作者 Zhenwei Shen Yifan Wang Xiaojie Xia Hao Zhang Hongming Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第9期2110-2120,共11页
A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare... A novel method was developed to enhance the utilization rate of steel slag(SS).Through treatment of SS with phosphoric acid and aminopropyl triethoxysilane(KH550),we obtained modified SS(MSS),which was used to prepare MSS/wood-plastic composites(MSS/WPCs)by replacing talcum powder(TP).The composites were fabricated through melting blending and hot pressing.Their mechanical and combustion properties,which comprise heat release,smoke release,and thermal stability,were systematically investigated.MSS can improve the mechanical strength of the composites through grafting reactions between wood powder and thermoplastics.Notably,MSS/WPC#50(16wt%MSS)with an MSS-to-TP mass ratio of 1:1 exhibited optimal comprehensive performance.Compared with those of WPC#0 without MSS,the tensile,flexural,and impact strengths of MSS/WPC#50 were increased by 18.5%,12.8%,and 18.0%,respectively.Moreover,the MSS/WPC#50 sample achieved the highest limited oxygen index of 22.5%,the highest vertical burning rating at the V-1 level,and the lowest horizontal burning rate at 44.2 mm/min.The formation of a dense and stable char layer led to improved thermal stability and a considerable reduction in heat and smoke releases of MSS/WPC#50.However,the partial replacement of TP with MSS slightly compromised the mechanical and flame-retardant properties,possibly due to the weak grafting caused by SS powder agglomeration.These findings suggest the suitability of MSS/WPCs for high-value-added applications as decorative panels indoors or outdoors. 展开更多
关键词 modified steel slag wood–plastic composites preparation method mechanical property flame retardant
下载PDF
Deterioration Reason and Improvement Measure of the Retarding Effect of Protein Retarder on Phosphorus Building Gypsum
14
作者 刘志刚 TANG Zezheng +3 位作者 杨立荣 WANG Chunmei XIE Yuantao LIU Yisen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期962-967,共6页
The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the settin... The retarding effect of protein retarder on phosphorus building gypsum(PBG)and desulfurization building gypsum(DBG)was investigated,and the results show that protein retarder for DBG can effectively prolong the setting time and displays a better retarding effect,but for PBG shows a poor retarding effect.Furthermore,the deterioration reason of the retarding effect of protein retarder on PBG was investigated by measuring the pH value and the retarder concentration of the liquid phase from vacuum filtration of PBG slurry at different hydration time,and the measure to improve the retarding effect of protein retarding on PBG was suggested.The pH value of PBG slurry(<5.0)is lower than that of DBG slurry(7.8-8.5).After hydration for 5 min,the concentration of retarder in liquid phase of DBG slurry gradually decreases,but in liquid phase of PBG slurry continually increases,which results in the worse retarding effect of protein retarder on PBG.The liquid phase pH value of PBG slurry can be adjusted higher by sodium silicate,which is beneficial to improvement in the retarding effect of the retarder.By adding 1.0%of sodium silicate,the initial setting time of PBG was efficiently prolonged from 17 to 210 min,but little effect on the absolute dry flexural strength was observed. 展开更多
关键词 protein retarder phosphorus building gypsum deterioration reason improvement measure
下载PDF
Vertically aligned montmorillonite aerogel-encapsulated polyethylene glycol with directional heat transfer paths for efficient solar thermal energy harvesting and storage
15
作者 Qijing Guo Cong Guo +2 位作者 Hao Yi Feifei Jia Shaoxian Song 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期907-916,共10页
The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in mon... The conversion and storage of photothermal energy using phase change materials(PCMs)represent an optimal approach for harnessing clean and sustainable solar energy.Herein,we encapsulated polyethylene glycol(PEG)in montmorillonite aerogels(3D-Mt)through vacuum impregnation to prepare 3D-Mt/PEG composite PCMs.When used as a support matrix,3D-Mt can effectively prevent PEG leakage and act as a flame-retardant barrier to reduce the flammability of PEG.Simultaneously,3D-Mt/PEG demonstrates outstanding shape retention,increased thermal energy storage density,and commendable thermal and chemical stability.The phase transition enthalpy of 3D-Mt/PEG can reach 167.53 J/g and remains stable even after 50 heating-cooling cycles.Furthermore,the vertical sheet-like structure of 3D-Mt establishes directional heat transport channels,facilitating efficient phonon transfer.This configuration results in highly anisotropic thermal conductivities that ensure swift thermal responses and efficient heat conduction.This study addresses the shortcomings of PCMs,including the issues of leakage and inadequate flame retardancy.It achieves the development and design of 3D-Mt/PEG with ultrahigh strength,superior flame retardancy,and directional heat transfer.Therefore,this work offers a design strategy for the preparation of high-performance composite PCMs.The 3D-Mt/PEG with vertically aligned and well-ordered array structure developed in this research shows great potential for thermal management and photothermal conversion applications. 展开更多
关键词 montmorillonite aerogel polyethylene glycol phase change materials solar thermal energy storage flame retardant
下载PDF
Superior Mechanical Behavior and Flame Retardancy FRP via a Distribution Controllable 1D/2D Hybrid Nanoclay Synergistic Toughening Strategy
16
作者 Zixuan Chen Tianyu Yu +4 位作者 Zetian Yang Zhibiao Wei Yan Li Weidong Yang Tao Yu 《Engineering》 SCIE EI CAS CSCD 2024年第9期166-178,共13页
The incorporation of commercial flame retardants into fiber-reinforced polymer(FRP)composites has been proposed as a potential solution to improve the latter’s poor flame resistance.However,this approach often poses ... The incorporation of commercial flame retardants into fiber-reinforced polymer(FRP)composites has been proposed as a potential solution to improve the latter’s poor flame resistance.However,this approach often poses a challenge,as it can adversely affect the mechanical properties of the FRP.Thus,balancing the need for improved flame resistance with the preservation of mechanical integrity remains a complex issue in FRP research.Addressing this critical concern,this study introduces a novel additive system featuring a combination of one-dimensional(1D)hollow tubular structured halloysite nanotubes(HNTs)and two-dimensional(2D)polygonal flake-shaped nano kaolinite(NKN).By employing a 1D/2D hybrid kaolinite nanoclay system,this research aims to simultaneously improve the flame retardancy and mechanical properties.This innovative approach offers several advantages.During combustion and pyrolysis processes,the 1D/2D hybrid kaolinite nanoclay system proves effective in reducing heat release and volatile leaching.Furthermore,the system facilitates the formation of reinforcing skeletons through a crosslinking mechanism during pyrolysis,resulting in the development of a compact char layer.This char layer acts as a protective barrier,enhancing the material’s resistance to heat and flames.In terms of mechanical properties,the multilayered polygonal flake-shaped 2D NKN plays a crucial role by impeding the formation of cracks that typically arise from vulnerable areas,such as adhesive phase particles.Simultaneously,the 1D HNT bridges these cracks within the matrix,ensuring the structural integrity of the composite material.In an optimal scenario,the homogeneously distributed 1D/2D hybrid kaolinite nanoclays exhibit remarkable results,with a 51.0%improvement in mode II fracture toughness(GIIC),indicating increased resistance to crack propagation.In addition,there is a 34.5%reduction in total heat release,signifying improved flame retardancy.This study represents a significant step forward in the field of composite materials.The innovative use of hybrid low-dimensional nanomaterials offers a promising avenue for the development of multifunctional composites.By carefully designing and incorporating these nanoclays,researchers can potentially create a new generation of FRP composites that excel in both flame resistance and mechanical strength. 展开更多
关键词 1D/2D nanoclays Hierarchical distribution Flame retardancy Fiber-reinforced polymer Damage mechanism
下载PDF
Ten-Minute Synthesis of a New Redox-Active Aqueous Binder for Flame-Retardant Li-S Batteries
17
作者 Tianpeng Zhang Borui Li +5 位作者 Zihui Song Wanyuan Jiang Siyang Liu Runyue Mao Xigao Jian Fangyuan Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期48-57,共10页
As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,a... As a critical role in battery systems,polymer binders have been shown to efficiently suppress the lithium polysulfide shuttling and accommodate volume changes in recent years.However,preparation processes and safety,as the key criterions for Li-S batteries'practical applications,still attract less attention.Herein,an aqueous multifunction binder(named PEI-TIC)is prepared via an easy and fast epoxy-amine ring-opening reaction(10 min),which can not only give the sulfur cathode a stable mechanical property,a strong chemical adsorption and catalytic conversion ability,but also a fire safety improvement.The Li-S batteries based on the PEI-TIC binder display a high discharge capacity(1297.8 mAh g^(-1)),superior rate performance(823.0 mAh g^(-1)at 2 C),and an ultralow capacity decay rate of 0.035%over more than 800 cycles.Even under 7.1 mg cm^(-2)S-loaded,the PEI-TIC electrode can also achieve a high areal capacity of 7.2 mA h g^(-1)and excellent cycling stability,confirming its application potential.Moreover,it is also noted that TG-FTIR test is performed for the first time to explore the flame-retardant mechanism of polymer binders.This work provides an economically and environmentally friendly binder for the practical application and inspires the exploration of the flame-retardant mechanism of all electrode components. 展开更多
关键词 3D cross-linked network environmentally friendly flame retardant Li-S batteries multifunction binder
下载PDF
Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations
18
作者 李存凯 梁云峰 +16 位作者 江中和 周松 华建坤 阳杰 杨庆虎 Alexander KNIEPS Philipp DREWS 徐鑫 毛飞越 谢伟 杨雨桐 郭金龙 李杨波 任正康 陈志鹏 王能超 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期13-21,共9页
Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and d... Accurate measurement of the average plasma parameters in the edge region,including the temperature and density of electrons and ions,is critical for understanding the characteristics of the scrape-off layer(SOL) and divertor plasma transport in magnetically confined fusion research.On the J-TEXT tokamak,a multi-channel retarding field analyzer(RFA) probe has been developed to study average plasma parameters in the edge region under various poloidal divertor and island divertor configurations.The edge radial profile of the ion-to-electron temperature ratio,τ_(i/e),has been determined,which gradually decreases as the SOL ion self-collisionality,v_(SOL)*,increases.This is broadly consistent with what has been observed previously from various tokamak experiments.However,the comparison of experimental results under different configurations shows that in the poloidal divertor configuration,even under the same v_(SOL)*,τ_(i/e) in the SOL region becomes smaller as the distance from the X-point to the target plate increases.In the island divertor configuration,τ_(i/e) near the O-point is higher than that near the X-point at the same v_(SOL)*,and both are higher than those in the limiter configuration.These results suggest that the magnetic configuration plays a critical role in the energy distributions between electrons and ions at the plasma boundary. 展开更多
关键词 ion temperature island divertor poloidal divertor retarding field analyzer(RFA)probe
下载PDF
Determination of Physical, Mechanical and Fire Retardancy Properties of Innovative Particleboard Made from Corn Stalk (Zea mays L.) Particles
19
作者 Lilik Astari Benoit Belleville +3 位作者 Kenji Umemura Alex Filkov Barbara Ozarska Robert H.Crawford 《Journal of Renewable Materials》 EI CAS 2024年第10期1729-1756,共28页
The demand for particleboard is increasing along with economic and population growth.However,two major barriers to the manufacture of particleboard are a shortage of raw materials(woodchips)and the emission of formald... The demand for particleboard is increasing along with economic and population growth.However,two major barriers to the manufacture of particleboard are a shortage of raw materials(woodchips)and the emission of formaldehyde from conventional adhesives.Agricultural by-products such as corn stalks contain an abundance of renewable lignocellulosic fiber.This study evaluates the effect of citric acid as a natural adhesive and fire retardant addition on the physical,mechanical,and fire retardancy properties of particleboards fabricated from corn stalks.A cost-effective and inorganic salt,calcium carbonate,was tested to enhance the fire retardancy.Ammonium dihydrogen phosphate was also considered as a comparative control.Particleboards with the addition of calcium carbonate was pretreated with sodium chloride.The particleboards were pressed for 10 min at 200℃.Japanese Industrial Standard JIS A 5908:2022 was used as the benchmark for the physical and mechanical tests.Fire retardancy was dynamically tested by simulating a Bushfire Attack Level of 19 kW/m^(2).The particleboard with 25 wt%citric acid had superior mechanical properties and complied with the JIS A 5908 standard for Type 13 base particleboard.Particleboard with the addition of calcium carbonate(5%and 10%)showed significantly delayed pyrolysis time. 展开更多
关键词 PARTICLEBOARD corn stalk fire retardancy citric acid mechanical properties
下载PDF
Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate
20
作者 Jinshuo Wang Lida Xing +1 位作者 Fulong Zhang Chuanfu Liu 《Journal of Renewable Materials》 EI CAS 2024年第1期89-102,共14页
Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce... Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass. 展开更多
关键词 Cellulose scaffold DELIGNIFICATION CaCO_(3) MINERALIZATION fire retardancy
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部