国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在...国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在光敏视网膜神经节细胞(ipRGCs)对人类产生非视觉效应。CIE最近还发布了一个开放获取的α响应工具箱,基于测量(用户自定义)的光谱或工具箱中内置的标准照明体(A、D65、E、FL11、LED-B3),计算光度量、辐射度量和光子系统中α响应计量的数量和比率。基于视黑素蛋白的ipRGCs光感受已被广泛证明可以解释非视觉响应的光谱敏感性,包括改变夜间睡眠的时间、褪黑素分泌和调节稳态瞳孔直径。最近的研究结果表明,感光色素视黑素蛋白也在视觉响应中发挥作用,并且基于视黑素蛋白的光感受可能对亮度感知和空间视觉方面有重要影响。虽然在非视觉效应方面,关于视杆细胞、视锥细胞与ipRGCs如何交互的认识不断发展,最近CIE的一份关于应用“在合适的时间推荐合适的光照”的立场声明中使用了视黑素响应日光(D65)等效照度来指导调节非视觉响应。关于这种方法的详细说明,可以通过第二届昼夜节律和神经生理光度学国际研讨会(曼彻斯特,2019年8月)的同行评审出版物了解*。CIE S 026新的α响应计量方法实现了可追踪测量,并对个人光照量、光干预和照明设计进行了正式的量化规范。通过使用这个工具箱,将这种计量方法应用于日常光源,包括动态变化的日光、LED照明光源以及智能手机屏幕等。这些示例展示了如何利用视黑素含量随时间变化的光照,以更好地支持人类健康与福祉。展开更多
Objective To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Data sources Relevant articles published in English or Chinese from 1970 to pres...Objective To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Data sources Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Study selection Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Results Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Kr^Jppel-like transcription factors, have been identified to play central roles in this process. Conclusions Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.展开更多
AIM:To investigate the impact of primary glaucoma on sleep quality and daytime sleepiness of patients.METHODS:Prospective cross-sectional study with consecutive sampling in South-East Asian population was performed.Va...AIM:To investigate the impact of primary glaucoma on sleep quality and daytime sleepiness of patients.METHODS:Prospective cross-sectional study with consecutive sampling in South-East Asian population was performed.Validated questionnaires:the Pittsburg Sleep Quality Index(PSQI)and Epworth Sleepiness Scale(ESS)were administered prospectively.Subjects with nonglaucomatous optic neuropathy or concomitant retinal pathology were excluded.Glaucoma severity was based on HVF 24-2 perimetry.Binocular single vision was represented based on the better eye.Frequency of and predictive factors for poor sleep quality and excessive daytime sleepiness were compared.RESULTS:A total of 79 primary open angle glaucoma(POAG),27 primary angle-closure glaucoma(PACG)patients,and 89 controls were recruited.PACG patients had higher median PSQI scores(P=0.004)and poorer sleep quality(P<0.001).Compared to controls,PACG patients were 3.34 times more likely to have poor sleep quality(P=0.008),which remained significant after adjustment for demographics(P=0.016)and predictive variables(P=0.013).PACG patients have poorer sleep quality when visual acuity(VA)was 6/15 or worse(P=0.009).Univariate and multivariate analysis of predictive variables for poor sleep quality and daytime sleepiness did not find statistical significance.CONCLUSION:PACG patients have poorer sleep quality but not daytime sleepiness.This is important in South-East Asian population with heavy disease burden.Evaluations on sleep disturbances can be considered to provide more ho istic care.展开更多
Sleep accounts for a third of one's lifetime, partial or complete deprivation of sleep could elicit sever disorders of body function. Previous studies have reported the higher prevalence of sleep disorders in glaucom...Sleep accounts for a third of one's lifetime, partial or complete deprivation of sleep could elicit sever disorders of body function. Previous studies have reported the higher prevalence of sleep disorders in glaucoma patients, but the definite mechanism for this phenomenon is unknown. On the other hand, it is well known by us that the intrinsically photosensitive retinal ganglion cells(ip RGCs) serve additional ocular functions, called non-image-forming(NIF) functions, in the regulation of circadian rhythm, melatonin secretion, sleep, mood and others. Specifically, ip RGCs can directly or indirectly innervate the central areas such as suprachiasmatic nucleus(SCN), downstream pineal gland(the origin of melatonin), sleep and wake-inducing centers and mood regulation areas, making NIF functions of ip RGCs relate to sleep. The more interesting thing is that previous research showed glaucoma not only affected visual functions such as the degeneration of classical retinal ganglion cells(RGCs), but also affected ip RGCs. Therefore, we hypothesize that higher prevalence of sleep disorders in glaucoma patients maybe result from the underlying glaucomatous injuries of ip RGCs leading to the abnormalities of diverse NIF functions corresponding to sleep.展开更多
文摘国际标准CIE S 026:2018为时间生物学领域的照明专业人员和现场研究人员提供了一种方法来表征非视觉光感受与响应方面的光照量。该标准定义了五种光谱灵敏度函数,以描述光辐射刺激五种α响应视网膜光感受器的能力,这些光感受器通过内在光敏视网膜神经节细胞(ipRGCs)对人类产生非视觉效应。CIE最近还发布了一个开放获取的α响应工具箱,基于测量(用户自定义)的光谱或工具箱中内置的标准照明体(A、D65、E、FL11、LED-B3),计算光度量、辐射度量和光子系统中α响应计量的数量和比率。基于视黑素蛋白的ipRGCs光感受已被广泛证明可以解释非视觉响应的光谱敏感性,包括改变夜间睡眠的时间、褪黑素分泌和调节稳态瞳孔直径。最近的研究结果表明,感光色素视黑素蛋白也在视觉响应中发挥作用,并且基于视黑素蛋白的光感受可能对亮度感知和空间视觉方面有重要影响。虽然在非视觉效应方面,关于视杆细胞、视锥细胞与ipRGCs如何交互的认识不断发展,最近CIE的一份关于应用“在合适的时间推荐合适的光照”的立场声明中使用了视黑素响应日光(D65)等效照度来指导调节非视觉响应。关于这种方法的详细说明,可以通过第二届昼夜节律和神经生理光度学国际研讨会(曼彻斯特,2019年8月)的同行评审出版物了解*。CIE S 026新的α响应计量方法实现了可追踪测量,并对个人光照量、光干预和照明设计进行了正式的量化规范。通过使用这个工具箱,将这种计量方法应用于日常光源,包括动态变化的日光、LED照明光源以及智能手机屏幕等。这些示例展示了如何利用视黑素含量随时间变化的光照,以更好地支持人类健康与福祉。
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 81170837).
文摘Objective To review the functions of these intracellular signals in their regulation of retinal ganglion cell (RGC) axon regeneration. Data sources Relevant articles published in English or Chinese from 1970 to present were selected from PubMed. Searches were made using the terms "intrinsic determinants, axon regeneration, RGC, optic nerve regeneration, and central nervous system axon regeneration." Study selection Articles studying the mechanisms controlling RGC and central nervous system (CNS) axon regeneration were reviewed. Articles focusing on the intrinsic determinants of axon regeneration were selected. Results Like other CNS neurons of mammals, RGCs undergo a developmental loss in their ability to grow axons as they mature, which is a critical contributing factor to the failure of nerve regeneration and repair after injury. This growth failure can be attributed, at least in part, by the induction of molecular programs preventing cellular overgrowth and termination of axonal growth upon maturation. Key intracellular signals and transcription factors, including B cell lymphoma/leukemia 2, cyclic adenine monophosphate, mammalian target of rapamycin, and Kr^Jppel-like transcription factors, have been identified to play central roles in this process. Conclusions Intense effort and substantial progress have been made to identify the various intrinsic growth pathways that regulate RGC axon regeneration. More work is needed to elucidate the mechanisms of and the interrelationship between the actions of these factors and to successfully achieve regeneration and repair of the severed RGC axons.
文摘AIM:To investigate the impact of primary glaucoma on sleep quality and daytime sleepiness of patients.METHODS:Prospective cross-sectional study with consecutive sampling in South-East Asian population was performed.Validated questionnaires:the Pittsburg Sleep Quality Index(PSQI)and Epworth Sleepiness Scale(ESS)were administered prospectively.Subjects with nonglaucomatous optic neuropathy or concomitant retinal pathology were excluded.Glaucoma severity was based on HVF 24-2 perimetry.Binocular single vision was represented based on the better eye.Frequency of and predictive factors for poor sleep quality and excessive daytime sleepiness were compared.RESULTS:A total of 79 primary open angle glaucoma(POAG),27 primary angle-closure glaucoma(PACG)patients,and 89 controls were recruited.PACG patients had higher median PSQI scores(P=0.004)and poorer sleep quality(P<0.001).Compared to controls,PACG patients were 3.34 times more likely to have poor sleep quality(P=0.008),which remained significant after adjustment for demographics(P=0.016)and predictive variables(P=0.013).PACG patients have poorer sleep quality when visual acuity(VA)was 6/15 or worse(P=0.009).Univariate and multivariate analysis of predictive variables for poor sleep quality and daytime sleepiness did not find statistical significance.CONCLUSION:PACG patients have poorer sleep quality but not daytime sleepiness.This is important in South-East Asian population with heavy disease burden.Evaluations on sleep disturbances can be considered to provide more ho istic care.
基金Supported by the National Natural Science Foundation of China(No.81200687)the National Major Scientific Equipment Program(No.2012YQ12008005)the Young Scholar for the Doctoral Program of Higher Education of China(No.20120181120014)
文摘Sleep accounts for a third of one's lifetime, partial or complete deprivation of sleep could elicit sever disorders of body function. Previous studies have reported the higher prevalence of sleep disorders in glaucoma patients, but the definite mechanism for this phenomenon is unknown. On the other hand, it is well known by us that the intrinsically photosensitive retinal ganglion cells(ip RGCs) serve additional ocular functions, called non-image-forming(NIF) functions, in the regulation of circadian rhythm, melatonin secretion, sleep, mood and others. Specifically, ip RGCs can directly or indirectly innervate the central areas such as suprachiasmatic nucleus(SCN), downstream pineal gland(the origin of melatonin), sleep and wake-inducing centers and mood regulation areas, making NIF functions of ip RGCs relate to sleep. The more interesting thing is that previous research showed glaucoma not only affected visual functions such as the degeneration of classical retinal ganglion cells(RGCs), but also affected ip RGCs. Therefore, we hypothesize that higher prevalence of sleep disorders in glaucoma patients maybe result from the underlying glaucomatous injuries of ip RGCs leading to the abnormalities of diverse NIF functions corresponding to sleep.