·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effec...·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.展开更多
Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB...Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and p16 among benign prostatic hyperplasia (BPH) and prostate cancer patients. Methods: In this case-control study, 63 patients were included in three groups; 21 with BPH as the control group, 21 with prostate cancer and good prognostic factors (based on prostate-specific antigen, Gleason score and stage) as good prognosis group, and 21 with prostate cancer and poor prognostic features as poor prognosis group. The prostate biopsy specimen of each individual was examined for hypermethylation of RARB and p16 promoters by methylation specific PCR (MSPCR). Results: Seven (33.3%) patients with good prognosis and 15 (71.4%) patients with poor prognosis were positive for RARB methylation, which were significantly higher than controls (P <0.0001). p16 promoter methylation was shown in 19.0% and 47.6% patients with good and poor prognosis, respectively. The RARB and p16 promoter methylation in the poor prognosis group was significantly higher than that in the good prognosis group (P =0.02 for RARB and P<0.0001 for p16). Conclusion: Hypermethylation of RARB and p16 promoters may predict prognosis in prostate cancer.展开更多
Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical...Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.展开更多
Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene the...Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.展开更多
Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation...Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation.To address this issue,real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2 A cells.The results revealed that miR-124 and miR-9 were upregulated,while miR-125 b was downregulated in retinoic acid-treated Neuro-2 A cells.To identify the miRNA that may play a key role,miR-124 expression was regulated by transfection of miRNA mimics or inhibitors.Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth.Moreover,miR-124 overexpression alone caused Neuro-2 A cells to differentiate into neurons,and its inhibitor could block this effect.These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2 A cells.展开更多
Aim: To study the expression pattern of the retinoic acid metabolizing enzymes RALDH2 and CYP26bl during mouse postnatal testis development at both mRNA and protein levels. Methods: Real-time polymerase chain reacti...Aim: To study the expression pattern of the retinoic acid metabolizing enzymes RALDH2 and CYP26bl during mouse postnatal testis development at both mRNA and protein levels. Methods: Real-time polymerase chain reaction and Western blot analysis were performed to determine the relative quantity of RALDH2 and CYP26bl at both mRNA and protein levels at postnatal day 1, 5, 10, 20, and in adult mice (70 days testes). Testicular localization of RALDH2 and CYP26b 1 during mouse postnatal development was examined using immunohistochemistry assay. Results: Aldhla2 transcripts and its protein RALDH2 began to increase at postnatal day 10, and remained at a high level through postnatal day 20 to adulthood. Cyp2661 transcripts and CYP26bl protein did not change significantly during mouse postnatal testis development. RALDH2 was undetectable in the postnatal 1, 5 and 10 day testes using immunohis- tochemistry assay. At postnatal day 20 it was detected in pachytene spermatocytes. Robust expression of RALDH2 was restricted in round spermatids in the adult mouse testis. In the developing and adult testis, CYP26bl protein was confined to the peritubular myoepithelial cells. Conclusion: Our results indicate that following birth, the level of retinoic acid in the seminiferous tubules might begin to increase at postnatal day 10, and maintain a high level through postnatal day 20 to adulthood.展开更多
Objective This study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality. Methods The mouse model of br...Objective This study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality. Methods The mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 sh RNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro. Results Nr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA. Conclusion Our study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.展开更多
This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in ...This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P0.01 or 0.05), but did not change after treatment with PD98059 (P0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P0.05), but decreased remarkably after hyperoxia (P0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.展开更多
Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods ...Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.展开更多
Macrophage cells play an important role in the initiation and regulation of the immune response. All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids) affect a large number of biological pro...Macrophage cells play an important role in the initiation and regulation of the immune response. All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids) affect a large number of biological processes.Recently , retinoids have been shown promise in the therapy and prevention of various cancers. However, many interesting questions related to the activities of retinoids remain to be answered: (Ⅰ) Molecular mechanisms by which retinoids exert their effects; (Ⅱ) why the clinical uses of retinoids give undesirable side effects of varying severity with a higher freqllency of blood system symptoms; (Ⅲ)little is known for its impacts on macrophage cells etc. We set up this experiment, therefore, to examine the apoptosis of ATRA on macrophage Ana-1 cell line. Apoptosis of the cells was quantitated, after staining cells with propidium iodide (PI), by both accounting nuclear condensation and flow cytometry. When the cells were treated with ATRA at or higher than 1 μM for more than 24 h, significant amount of the apoptotic cells was observed. Induction of apoptosis of Ana-1 cells by ATRA was in time- and dose-dependent manners, exhibiting the similar pattern as the apoptosis induced by actinomycin D (ACTD). ATRA treatment of Ana-1 cells also caused the changes of the mRNA levels of apoptosis-associated gene bcl-2, as detected by Northern blot analysis. The temporal changes of bcl-2 expression by ATRA was also parallel to that by ACTD. In conclusion,ATRA can induce apoptosis in macrophage cells, which may be helpful in understanding of immunological functions retinoids.展开更多
OBJECTIVE To study whether siRNA targeting against the Bcl-2 gene can enhance sensitivity of HL-60 cells to all trans retinoic acid(ATRA). METHODS siRNA,which is a leading sequence selected by previous experiments,was...OBJECTIVE To study whether siRNA targeting against the Bcl-2 gene can enhance sensitivity of HL-60 cells to all trans retinoic acid(ATRA). METHODS siRNA,which is a leading sequence selected by previous experiments,was transferred into HL-60 cells.At 6 h after transfection,the cells were cultured with ATRA.The cell growth of the HL-60 cells was measured by the MTT assay at 24, 48,72 h.The level of the Bcl-2 protein and ROS(reactive oxygen species)as well as membrane potential of the mitochondria were determined by flowcytometry. RESULTS siRNA significantly increased the inhibitory effect of ATRA on growth of the HL-60 cells.The combination of siRNA with ATRA resulted in a decrease in the Bcl-2 protein level and an increase in the ROS level as well as significantly lowering the mitochondrial membrane potential of the HL-60 cells(P<0.05). CONCLUSION Effective siRNA targeting of Bcl-2 increases the sensitivity of HL-60 leukemic cells to ATRA by inhibiting the expression of the Bcl-2 protein.展开更多
The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating m...The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.展开更多
Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under isch...Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.展开更多
AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in...AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in various cancers, in human colorectal cancer.METHODS: Real-time reverse-transcription polymerase chain reaction was used to measure the mRNA expression of SphK1, LPAR2, and the three major S1P receptors in 27 colorectal cancer samples and corresponding normal tissue samples. We also examined the correlation between the expression of SphK1 and LPAR2.RESULTS: Colorectal cancer tissue in 22 of 27 patients had higher levels of SphK1 mRNA than in normal tissue. In two-thirds of the samples, SphK1 mRNA expression was more than two-fold higher than in normal tissue. Consistent with previous reports, LPAR2 mRNA expression in 20 of 27 colorectal cancer tissue samples was higher compared to normal tissue samples. Expression profiles of all three major S1P receptors, S1PR1, S1PR2, and S1PR3, varied without any trend, with no significant difference in expression between cancer and normal tissues. A highly significant positive correlation was found between SphK1 and LPAR2 expression [Pearson’s correlation coefficient (r) = 0.784 and P < 0.01]. The mRNA levels of SphK1 and LPAR2 did not correlate with TNM stage.CONCLUSION: Our findings suggest that S1P and LPA may play important roles in the development of colorectal cancer via the upregulation of SphK1 and LPAR2, both of which could serve as new therapeutic targets in the treatment of colorectal cancer.展开更多
Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in c...Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.展开更多
基金Supported by Project of Science&Technology Department of Sichuan Province (No.23NSFSC1940)City and College Cooperation (No.22SXFWDF0003)。
文摘·AIM: To investigate the effect of all-trans retinoic acid(ATRA) on retinol dehydrogenase 5(RDH5), matrix metalloproteinase-2(MMP-2) and transforming growth factor-β2(TGF-β2) transcription levels, and the effect of RDH5 on MMP-2 and TGF-β2 in retinal pigment epithelium(RPE) cells.·METHODS: After adult RPE cell line-19(ARPE-19 cells) intervened with gradient concentrations of ATRA(0-20 μmol/L) for 24h, flow cytometry was used to detect the proliferation and apoptosis of cells in each group, and quantitative realtime polymerase chain reaction(q RT-PCR) was used to detect RDH5, MMP-2 and TGF-β2 m RNA expression. Then, after ARPE-19 cells transfected with three different si RNA targets for 48h, the RDH5 knockdown efficiency of each group and expression of MMP-2 and TGF-β2 m RNA within them was detected by q RT-PCR. ·RESULTS: Flow cytometry results showed that ATRA could inhibit the proliferation of RPE cells and promote the apoptosis of RPE cells, and the difference of apoptosis was statistically significant when the ATRA concentration exceeded 5 μmol/L and compared with the normal control group(P=0.027 and P=0.031, respectively). q RT-PCR results showed that ATRA could significantly inhibit the expression level of RDH5 m RNA(P<0.001) and promote the expression of MMP-2 and TGF-β2 m RNA(P=0.03 and P<0.001, respectively) in a dose-dependent manner, especially when treated with 5 μmol/L ATRA. The knockdown efficiency of RDH5 si RNA varies with different targets, among which RDH5 si RNA-435 had the highest knockdown efficiency, i.e., more than 50% lower than that of the negative control group(P=0.02). When RDH5 was knocked down for 48h, the results of q RT-PCR showed that the expressions of MMP-2 and TGF-β2 m RNA were significantly up-regulated(P<0.001).·CONCLUSION: ATRA inhibits the expression of RDH5 and promotes MMP-2 and TGF-β2, and further RDH5 knockdown significantly upregulates MMP-2 and TGF-β2. These findings suggest that RDH5 may be involved in an epithelial-mesenchymal transition of RPE cells mediated by ATRA.
文摘Objective: The molecular mechanism of prostate cancer is poorly understood. The aim of the study was to investigate the prevalence and prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and p16 among benign prostatic hyperplasia (BPH) and prostate cancer patients. Methods: In this case-control study, 63 patients were included in three groups; 21 with BPH as the control group, 21 with prostate cancer and good prognostic factors (based on prostate-specific antigen, Gleason score and stage) as good prognosis group, and 21 with prostate cancer and poor prognostic features as poor prognosis group. The prostate biopsy specimen of each individual was examined for hypermethylation of RARB and p16 promoters by methylation specific PCR (MSPCR). Results: Seven (33.3%) patients with good prognosis and 15 (71.4%) patients with poor prognosis were positive for RARB methylation, which were significantly higher than controls (P <0.0001). p16 promoter methylation was shown in 19.0% and 47.6% patients with good and poor prognosis, respectively. The RARB and p16 promoter methylation in the poor prognosis group was significantly higher than that in the good prognosis group (P =0.02 for RARB and P<0.0001 for p16). Conclusion: Hypermethylation of RARB and p16 promoters may predict prognosis in prostate cancer.
文摘Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field.
基金a grant from the Bureau of Health, Sichuan Province, China (No. 050209).
文摘Objective To investigate the impact of all-trans retinoic acid (ATRA) on MDM2 gene expression in astrocytoma cell line SHG-44, and to provide basic data for further research on the progression mechanism and gene therapy of human astrocytoma. Methods The differential expressions of MDM2 gene and protein in SHG-44 cells were detected by cDNA microarray and Western blot, respectively, before and after treatment of ATRA. The expressions of MDM2 protein in WHO grade Ⅱ and grade Ⅳ astrocytomas were determined by immunohistochemical streptavidin-peroxidase method. Some differentially expressed genes were selected randomly for Northern blot analysis. Results The intensity ratio of ATRA-treated to untreated SHG-44 cell was 0.37 in the cDNA microarray, suggesting that the expression of MDM2 gene was down-regulated in SHG-44 cells after treatment with ATRA. Some genes differentially expressed in the microarray were confirmed by Northern blot. Western blot demonstrated that the optical density ratios of MDM2 to β-actin in ATRA-treated and untreated SHG-44 were 14.02±0.35 and 21.40±0.58 (t = 24.728, P = 0.000), respectively, suggesting that the expression of MDM2 protein was inhibited in ATRA-treated SHG-44 cells. Moreover, the percentages of MDM2-positive protein were 24.00% (6/25) and 56.52% (13/23) (x^2 = 5.298, P = 0.021) in WHO grade Ⅱ and grade Ⅳ astrocytomas, respectively, suggesting that the expression of MDM2 protein may increase along with the elevation of astrocytoma malignancy. Conclusion ATRA can inhibit MDM2 gene expression in SHG-44 cells, and MDM2 is related to astrocytoma progression.
基金supported by the Natural Science Foundation of Shanghai of China,No.16ZR1410500(to SZD)
文摘Retinoic acid can cause many types of cells,including mouse neuroblastoma Neuro-2 A cells,to differentiate into neurons.However,it is still unknown whether microRNAs(miRNAs)play a role in this neuronal differentiation.To address this issue,real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2 A cells.The results revealed that miR-124 and miR-9 were upregulated,while miR-125 b was downregulated in retinoic acid-treated Neuro-2 A cells.To identify the miRNA that may play a key role,miR-124 expression was regulated by transfection of miRNA mimics or inhibitors.Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth.Moreover,miR-124 overexpression alone caused Neuro-2 A cells to differentiate into neurons,and its inhibitor could block this effect.These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2 A cells.
基金We thank Dr Bing-Shi Guo for the linguistic revision of the manuscript, and Jin-Mei Wang for her excellent technical assistance. This work was supported by the National Natural Science Foundation of China (No. 30070391) and the Fourth Shanghai Municipal Education Commission Key Academic Discipline Foundation, China (No. ZDXK 2001).
文摘Aim: To study the expression pattern of the retinoic acid metabolizing enzymes RALDH2 and CYP26bl during mouse postnatal testis development at both mRNA and protein levels. Methods: Real-time polymerase chain reaction and Western blot analysis were performed to determine the relative quantity of RALDH2 and CYP26bl at both mRNA and protein levels at postnatal day 1, 5, 10, 20, and in adult mice (70 days testes). Testicular localization of RALDH2 and CYP26b 1 during mouse postnatal development was examined using immunohistochemistry assay. Results: Aldhla2 transcripts and its protein RALDH2 began to increase at postnatal day 10, and remained at a high level through postnatal day 20 to adulthood. Cyp2661 transcripts and CYP26bl protein did not change significantly during mouse postnatal testis development. RALDH2 was undetectable in the postnatal 1, 5 and 10 day testes using immunohis- tochemistry assay. At postnatal day 20 it was detected in pachytene spermatocytes. Robust expression of RALDH2 was restricted in round spermatids in the adult mouse testis. In the developing and adult testis, CYP26bl protein was confined to the peritubular myoepithelial cells. Conclusion: Our results indicate that following birth, the level of retinoic acid in the seminiferous tubules might begin to increase at postnatal day 10, and maintain a high level through postnatal day 20 to adulthood.
基金supported by National Natural Science Foundation Projects(No.81671462)National Natural Science Foundation for Young Scientists of China(No.81300487)+1 种基金Shanxi Province Science and Technology Creative Team(No.2013131016)Shanxi Province Overseas Returnee Scientific Research Fund(No.2013-key 5)
文摘Objective This study aimed to investigate the expression pattern and function of Nuclear receptor subfamily 2 group E member 1 (Nr2e1) in retinoic acid (RA)-induced brain abnormality. Methods The mouse model of brain abnormality was established by administering 28 mg/kg RA, and neural stem cells (NSCs) were isolated from the mouse embryo and cultured in vitro. Nr2e1 expression was detected by whole mount in situ hybridization, RT-PCR, and Western blotting. Nr2e1 function was determined by transducing Nr2e1 sh RNA into NSCs, and the effect on the sonic hedgehog (Shh) signaling pathway was assessed in the cells. In addition, the regulation of Nr2e1 expression by RA was also determined in vitro. Results Nr2e1 expression was significantly downregulated in the brain and NSCs of RA-treated mouse embryos, and knockdown of Nr2e1 affected the proliferation of NSCs in vitro. In addition, a similar expression pattern of Nr2e1 and RA receptor (RAR) α was observed after treatment of NSCs with different concentrations of RA. Conclusion Our study demonstrated that Nr2e1 could be regulated by RA, which would aid a better understanding of the mechanism underlying RA-induced brain abnormality.
基金supported by a grant from the Nature Sciences Foundation of China (No. 30872795)
文摘This study examined the effects of retinoic acid (RA), PD98059, SP600125 and SB203580 on the hyperoxia-induced expression and regulation of matrix metalloproteinase-2 (MMP-2) and metalloproteinase-2 (TIMP-2) in premature rat lung fibroblasts (LFs). LFs were exposed to hyperoxia or room air for 12 h in the presence of RA and the kinase inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2) and SB203580 (p38) respectively. The expression levels of MMP-2 and TIMP-2 mRNA were detected by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). MMP-2 activity was measured by zymography. The amount of p-ERK1/2, REK1/2, p-JNK1/2, JNK1/2, p-p38 and p38 was determined by Western blotting. The results showed that: (1) PD98059, SP600125 and SB203580 significantly inhibited p-ERK1/2, p-JNK1/2 and p-p38 respectively in LFs; (2) The expression of MMP-2 mRNA in LFs exposed to hyperoxia was decreased after treatment with RA, SP600125 and SB203580 respectively (P0.01 or 0.05), but did not change after treatment with PD98059 (P0.05). Meanwhile, RA, PD98059, SP600125 and SB203580 had no effect on the expression of TIMP-2 mRNA in LFs exposed to room air or hyperoxia (P0.05); (3) The expression of pro- and active MMP-2 experienced no change after treatment with RA or SP600125 in LFs exposed to room air (P0.05), but decreased remarkably after hyperoxia (P0.01 or 0.05). SB203580 inhibited the expression of pro- and active MMP-2 either in room air or under hyperoxia (P0.01). PD98059 exerted no effect on the expression of pro- and active MMP-2 (P0.05). It was suggested that RA had a protective effect on hyperoxia-induced lung injury by down-regulating the expression of MMP-2 through decreasing the JNK and p38 activation in hyperoxia.
基金Supported by National Natural Science Foundation of China (30871382,30721063)National Basic Research Program of China (973 Program) (2005CB522405)Special Funds of State Key Laboratories (2060204)
文摘Objective To investigate the regulatory mechanisms of acetylated p53 in the expression of microtubule-associated protein-2(MAP2) in neuronal differentiation of P19 cells induced by all-trans retinoic acid(RA).Methods Neuronal differentiation of P19 cells was initiated with 4-day RA treatment.Immunofluorescence,real-time reverse transcription-polymerase chain reaction(RT-PCR) assay,and map2 promoter driven luciferase assay were performed to detect the expression and relative promoter activity of MAP2 in those RA-treated cells.Real-time PCR-based chromatin immunoprecipitation assay(ChIP) was carried out to reveal the specific recruitment of acetylated p53 onto its binding sites on map2 promoter.Results The expression of MAP2 was markedly increased in RA-induced P19 cells.The map2 mRNA increased 34-fold after 4 days of RA treatment and 730-fold 2 days after the treatment,compared with the cells without RA treatment(control).p53 was recruited to the promoter of map2 gene in acetylated form and thereby enhanced its promoter activity.p300/CBP associated factor(PCAF) was found induced in RA-treated cells and enriched in the nucleus,which might contribute to the acetylation of p53 in the regulation of map2 gene.Conclusions Acetylated p53 may participate in regulating the expression of map2 in RA-induced differentiation of P19 cells.PCAF is possibly involved in this process by mediating the acetylation of p53.
文摘Macrophage cells play an important role in the initiation and regulation of the immune response. All-trans retinoic acid (ATRA) and its natural and synthetic analogs (retinoids) affect a large number of biological processes.Recently , retinoids have been shown promise in the therapy and prevention of various cancers. However, many interesting questions related to the activities of retinoids remain to be answered: (Ⅰ) Molecular mechanisms by which retinoids exert their effects; (Ⅱ) why the clinical uses of retinoids give undesirable side effects of varying severity with a higher freqllency of blood system symptoms; (Ⅲ)little is known for its impacts on macrophage cells etc. We set up this experiment, therefore, to examine the apoptosis of ATRA on macrophage Ana-1 cell line. Apoptosis of the cells was quantitated, after staining cells with propidium iodide (PI), by both accounting nuclear condensation and flow cytometry. When the cells were treated with ATRA at or higher than 1 μM for more than 24 h, significant amount of the apoptotic cells was observed. Induction of apoptosis of Ana-1 cells by ATRA was in time- and dose-dependent manners, exhibiting the similar pattern as the apoptosis induced by actinomycin D (ACTD). ATRA treatment of Ana-1 cells also caused the changes of the mRNA levels of apoptosis-associated gene bcl-2, as detected by Northern blot analysis. The temporal changes of bcl-2 expression by ATRA was also parallel to that by ACTD. In conclusion,ATRA can induce apoptosis in macrophage cells, which may be helpful in understanding of immunological functions retinoids.
基金The work was supported by a grant from the Key Subject Foundation of Overseas Chinese Affairs Office of the State Council(No.51205002)
文摘OBJECTIVE To study whether siRNA targeting against the Bcl-2 gene can enhance sensitivity of HL-60 cells to all trans retinoic acid(ATRA). METHODS siRNA,which is a leading sequence selected by previous experiments,was transferred into HL-60 cells.At 6 h after transfection,the cells were cultured with ATRA.The cell growth of the HL-60 cells was measured by the MTT assay at 24, 48,72 h.The level of the Bcl-2 protein and ROS(reactive oxygen species)as well as membrane potential of the mitochondria were determined by flowcytometry. RESULTS siRNA significantly increased the inhibitory effect of ATRA on growth of the HL-60 cells.The combination of siRNA with ATRA resulted in a decrease in the Bcl-2 protein level and an increase in the ROS level as well as significantly lowering the mitochondrial membrane potential of the HL-60 cells(P<0.05). CONCLUSION Effective siRNA targeting of Bcl-2 increases the sensitivity of HL-60 leukemic cells to ATRA by inhibiting the expression of the Bcl-2 protein.
基金funded by Coordination for the Improvement of Higher Education Personnel (CAPES,Brazil-Finance Code 001,to LRB)the S?o Paulo Research Foundation(FAPESP,Brazil,project#2018/07366-4)+1 种基金The National Council for Scientific and Technological Development (CNPq,Brazil,project#303006/2018-8,to LRB)a PhD fellowship from FAPESP under Grant Agreement No 2020/02109-3。
文摘The transient receptor potential melastatin 2 is a calcium-permeable cation channel member of the TRP family. Also known as an oxidative stress-activated channel, the transient receptor potential melastatin 2 gating mechanism is dependent on reactive oxygen species. In pathological conditions, transient receptor potential melastatin 2 is overactivated, leading to a Ca~(2+) influx that alters cell homeostasis and promotes cell death. The role of transient receptor potential melastatin 2 in neurodegenerative diseases, including Alzheimer's disease and ischemia, has already been described and reviewed. However, data on transient receptor potential melastatin 2 involvement in Parkinson's disease pathology has emerged only in recent years and the issue lacks review studies that focus specifically on this topic. The present review aims to elucidate the role of the transient receptor potential melastatin 2 channel in Parkinson's disease by reviewing, summarizing, and discussing the in vitro, in vivo, and human studies published until August 2022. Here we describe fourteen studies that evaluated the transient receptor potential melastatin 2 channel in Parkinson's disease. The Parkinson's disease model used, transient receptor potential melastatin 2 antagonist and genetic approaches, and the main outcomes reported were discussed. The studies described transient receptor potential melastatin 2 activation and enhanced expression in different Parkinson's disease models. They also evidenced protective and restorative effects when using transient receptor potential melastatin 2 antagonists, knockout, or silencing. This review provides a literature overview and suggests where there is a need for more research. As a perspective point, this review shows evidence that supports transient receptor potential melastatin 2 as a pharmacological target for Parkinson's disease in the future.
基金the National Natural Science Foundation of China (No. 30500189)
文摘Objective The present study aimed to explore the role of P2Y1 receptor in glial fibrillary acidic protein (GFAP) production and glial cell line-derived neurotrophic factor (GDNF) secretion of astrocytes under ischemic insult and the related signaling pathways. Methods Using transient right middle cerebral artery occlusion (tMCAO) and oxygen-glucose-serum deprivation for 2 h as the model of ischemic injury in vivo and in vitro, immunofluorescence, quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme linked immunosorbent assay (ELISA) were used to investigate location of P2Y1 receptor and GDNF, the expression of GFAP and GDNF, and the changes of signaling molecules. Results Blockage of P2Y1 receptor with the selective antagonist N^6-methyl-2′-deoxyadenosine 3′,5′-bisphosphate diammonium (MRS2179) reduced GFAP production and increased GDNF production in the antagonist group as compared with simple ischemic group both in vivo and in vitro. Oxygen-glucose-serum deprivation and blockage of P2Y1 receptor caused elevation of phosphorylated Akt and cAMP response element binding protein (CREB), and reduction of phosphorylated Janus kinase2 (JAK2) and signal transducer and activator of transcription3 (STAT3, Ser727). After blockage of P2Y1 receptor and deprivation of oxygen-glucose-serum, AG490 (inhibitor of JAK2) reduced phosphorylation of STAT3 (Ser727) as well as expression of GFAP; LY294002, an inhibitor of phosphatidylinositol 3-kinase (PI3-K), decreased phosphorylation of Akt and CREB; the inhibitor of mitogen-activated protein kinase kinase 1/2 (MEK 1/2) U0126, an important molecule of Ras/extracellular signal- regulated kinase (ERK) signaling pathway, decreased the phosphorylation of JAK2, STAT3 (Ser727), Akt and CREB. Conclusion These results suggest that P2Y1 receptor plays a role in the production of GFAP and GDNF in astrocytes under transient ischemic condition and the related signaling pathways may be JAK2/STAT3 and PI3-K/Akt/CREB, respectively, and that crosstalk probably exists between them.
基金Supported by Grant 2010 from Tokyo MetropolisJapan
文摘AIM: To examine the expression of SphK1, an oncogenic kinase that produces sphingosine 1-phosphate (S1P), and its correlation with the expression of LPAR2, a major lysophosphatidic acid (LPA) receptor overexpressed in various cancers, in human colorectal cancer.METHODS: Real-time reverse-transcription polymerase chain reaction was used to measure the mRNA expression of SphK1, LPAR2, and the three major S1P receptors in 27 colorectal cancer samples and corresponding normal tissue samples. We also examined the correlation between the expression of SphK1 and LPAR2.RESULTS: Colorectal cancer tissue in 22 of 27 patients had higher levels of SphK1 mRNA than in normal tissue. In two-thirds of the samples, SphK1 mRNA expression was more than two-fold higher than in normal tissue. Consistent with previous reports, LPAR2 mRNA expression in 20 of 27 colorectal cancer tissue samples was higher compared to normal tissue samples. Expression profiles of all three major S1P receptors, S1PR1, S1PR2, and S1PR3, varied without any trend, with no significant difference in expression between cancer and normal tissues. A highly significant positive correlation was found between SphK1 and LPAR2 expression [Pearson’s correlation coefficient (r) = 0.784 and P < 0.01]. The mRNA levels of SphK1 and LPAR2 did not correlate with TNM stage.CONCLUSION: Our findings suggest that S1P and LPA may play important roles in the development of colorectal cancer via the upregulation of SphK1 and LPAR2, both of which could serve as new therapeutic targets in the treatment of colorectal cancer.
基金supported by a grant from the National Natural Science Foundation of China (No. 81001237)
文摘Objective To study the effect of chronic noise exposure on expression of N-methyI-D-aspartic acid receptor 2B (NR2B) and tau phosphorylation in hippocampus of rats. Methods Twenty-four male SD rats were divided in control group and chronic noise exposure group. NR2B expression and tau phosphorylation in hippocampus of rats were detected after chronic noise exposure (100 dB SPL white noise, 4 h/dx30d) and their mechanisms underlying neuronal apoptosis in hippocampus of rats with TUNEL staining. Results The NR2B expression decreased significantly after chronic noise exposure which resulted in tau hyperphosphorylation and neural apoptosis in hippocampus of rats. Immunohistochemistry showed that the tau hyperphosphorylation was most prominent in dentate gyrus (DG) and CA1 region of rat hippocampus. Conclusion The abnormality of neurotransmitter system, especially Glu and NR2B containing NMDA receptor, and tau hyperphosphorylation in hippocampus of rats, may play a role in chronic noise-induced neural apoptosis and cognition impairment.