This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and techn...This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and technical characteristics. Scale-up test and an annual1200-ton-magnesium demonstration-level test was conducted to confirm the rationality, reliability, and advancement of the equipment, system and process design. It is indicated that the new technology solved a series of problems of traditional silicothermic process including adhesion and glaze, short life of retort, low efficiency, high impurity of crystallized magnesium, large heat losses, and poor working environment,making a great technological breakthrough in this field. Representatively, the new well-designed ceramic-lined steel retort serves 2~3 times in life than the normal retorts. The magnesium yield per retort is improved 4~5 times, with purity of >99.8%. The energy consumption in reduction stage is reduced by more than 20%. The mechanical production is fully realized and operating environment is significantly improved.展开更多
Oil shale samples from Sultani oil shale mine, south of Jordan, were pyrolyzed by a partial combustion to generate shale oil. The produced water was sent for analysis. The different samples were analyzed for carbon co...Oil shale samples from Sultani oil shale mine, south of Jordan, were pyrolyzed by a partial combustion to generate shale oil. The produced water was sent for analysis. The different samples were analyzed for carbon content, and results showed that the TOC was 2010 mg per liter of retorted water. Phenol and arsenic contents were measured and found to be 64 mg and 0.18 mg per liter respectively. Phosphate and sulfate were also determined and found to be 35.7 and 5022 mg per liter. On the other hand, ammonium was also found to be 2831 mg per liter. Several elements were traced and reported in the present work, in which arsenic, chrome and nickel are the most important, and the retorted water was found to contain 0.18, 0.7 and 0.5 mg per liter.展开更多
When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the g...When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.展开更多
基金the financial support from the Zhengzhou Collaborative Innovation Major Funding (18XTZX12010)National Key Research and Development Project (2016YFB0301101)Baosteel Metals Co.,Ltd.
文摘This paper comprehensively introduces a new magnesium production technology the compound-vertical-retort technology, involving in the related fundamental researches, core equipment development, working flow, and technical characteristics. Scale-up test and an annual1200-ton-magnesium demonstration-level test was conducted to confirm the rationality, reliability, and advancement of the equipment, system and process design. It is indicated that the new technology solved a series of problems of traditional silicothermic process including adhesion and glaze, short life of retort, low efficiency, high impurity of crystallized magnesium, large heat losses, and poor working environment,making a great technological breakthrough in this field. Representatively, the new well-designed ceramic-lined steel retort serves 2~3 times in life than the normal retorts. The magnesium yield per retort is improved 4~5 times, with purity of >99.8%. The energy consumption in reduction stage is reduced by more than 20%. The mechanical production is fully realized and operating environment is significantly improved.
文摘Oil shale samples from Sultani oil shale mine, south of Jordan, were pyrolyzed by a partial combustion to generate shale oil. The produced water was sent for analysis. The different samples were analyzed for carbon content, and results showed that the TOC was 2010 mg per liter of retorted water. Phenol and arsenic contents were measured and found to be 64 mg and 0.18 mg per liter respectively. Phosphate and sulfate were also determined and found to be 35.7 and 5022 mg per liter. On the other hand, ammonium was also found to be 2831 mg per liter. Several elements were traced and reported in the present work, in which arsenic, chrome and nickel are the most important, and the retorted water was found to contain 0.18, 0.7 and 0.5 mg per liter.
基金Basic research program of Shanxi Province(20210302124136 and 20210302123177)National Key R&D Program of China(2019YFA0705501)+1 种基金Key R&D and promotion projects in Henan Province(212102310010)National Natural Science Foundation of China(52104144,U23B2088).
文摘When high-temperature steam is used as a medium to pyrolyze organic-rich shale,water steam not only acts as heat transfer but also participates in the chemical reaction of organic matter pyrolysis,thus affecting the generation law and release characteristics of gas products.In this study,based on a long-distance reaction system of organic-rich shale pyrolysis via steam injection,the effects of steam temperature and reaction distance on gas product composition are analyzed in depth and compared with other pyrolysis processes.The advantages of organic-rich shale pyrolysis via steam injection are then evaluated.The volume concentration of hydrogen in the gas product obtained via the steam injection pyrolysis of organic-rich shale is the highest,which is more than 60%.The hydrogen content increases as the reaction distance is extended;however,the rate of increase changes gradually.Increasing the reaction distance from 800 to 4000 mm increases the hydrogen content from 34.91%to 69.68%and from 63.13%to 78.61%when the steam temperature is 500℃ and 555℃,respectively.However,the higher the heat injection temperature,the smaller the reaction distance required to form a high concentration hydrogen pyrolysis environment(hydrogen concentration>60%).When the steam pyrolysis temperature is increased from 500℃ to 555℃,the reaction distance required to form a high concentration of hydrogen is reduced from 3800 to 800 mm.Compared with the direct retorting process,the volume concentration of hydrogen obtained from high-temperature steam pyrolysis of organic-rich shale is 8.82 and 10.72 times that of the commonly used Fushun and Kivite furnaces,respectively.The pyrolysis of organic-rich shale via steam injection is a pyrolysis process in a hydrogen-rich environment.