Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio...Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.展开更多
We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and...We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and chemical composition of authigenic minerals,fluid evidence from fluid inclusions and formation water measurements were all used to fulfill this aim.Eodiagenesis occurred with the participation of meteoric water and connate water.Mesodiagenesis is related to high salinity fluids,which were attributed as originating from the overlying Neogene Jidike Formation evaporite(principal minerals including halite,anhydrite,glauberite,carnallite and thenardite).The onset of high salinity fluid migration is inferred to occur during the late Miocene(12.4-9.2 Ma)through the use of homogenization temperatures measured in the present study and K-Ar dating of authigenetic illites from previous work.This period is consistent with the crucial phase(13-10 Ma)that witnessed the rapid uplift of the southern Tianshan Mts and the stage when calcite and anhydrite veins formed in the studied strata.We thus argue that diagenesis related to high salinity fluids occurred as a response to the Tianshan Mts'rapid uplift and related tectonic processes.The flow of high salinity fluids was probably driven by a density gradient and channeled and focused by fractures formed contemporaneously.展开更多
Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded...Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon a...Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.展开更多
Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable ...Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks.展开更多
The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Ol...The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.展开更多
The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existenc...The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.展开更多
The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using se...The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS.展开更多
Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin sub...Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.展开更多
Characteristics of deformation in the thrust belt and sequence stratigraphic framework in the foreland basin, structural features of the basin margin, and the episodic thrusting are studied in this paper by combining ...Characteristics of deformation in the thrust belt and sequence stratigraphic framework in the foreland basin, structural features of the basin margin, and the episodic thrusting are studied in this paper by combining the eastern Qilian thrust belt and the Late Triassic foreland basin on the southwestern margin of Ordos. On this basis, a geological model and a mechanical model of coupling mechanism were established for the pair of thrust belt and foreland basin, and the subsidence and deposition process of the foreland basin were simulated on given parameters.展开更多
A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study res...A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study results, combined with geological analyses of the basin's periphery and the basement, as well as studies of the sedimentary rocks within the basin, the unconformities, tectonic geometry, kinematics and geodynamics, lead to the conclusion that the Junggar basin was characterized by the development of foreland basin systems during the Late Carboniferous and Permian. During that period, three foreland basin systems were developed: (1) the northwest foreland basin system, which trended nearly north-south from Mahu to the Chepaizi Palaeo-mountain during its early stage of development and thus it was also referred to as the west foreland basin system; (2) the Karamaili foreland basin system in the east and (3) the Northern Tianshan foreland basin system in the south. These systems are different in size, development stage and time of formation. The first two are developed earlier than the third, but they are smaller in size. All the structures in the Junggar basin have resulted from the integration and superposition of structural elements in the above three systems. In general, the development of the Junggar basin can be divided into four stages. Stage I was marked by the creation and evolution of the marginal western foreland and the peripheral Karamaili foreland basin systems during the Late Carboniferous-early Early Permian (C3P1ja). Stage II was characterized by the development of complicated foreland basin systems during the middle-late Early Permian (P1jb-P1f) when the three foreland basin systems took their shapes. Stage III was the integration stage of peripheral foreland basin systems during the Middle Permian (P2) in which steady and slow tectonic subsidence prevailed. Stage IV coincided with the shrinking of foreland basin development during the Late Permian (P3).展开更多
The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-secti...The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.展开更多
We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment...We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.展开更多
Foreland basins on the western edge of Ordos are characterized by typical loess geomorphologic features. Its surface is severely cut, and its underground geological structures are complicated.Making use of the advanta...Foreland basins on the western edge of Ordos are characterized by typical loess geomorphologic features. Its surface is severely cut, and its underground geological structures are complicated.Making use of the advantage of CEMP in exploration in frontland as well as successful multi-year exploration experiences in West China, we first employed the CEMP method to conduct exploration on the western edge of the Ordos basin and its surrounding areas. The practices proved that rich and reliable geological results have been achieved with the CEMP method in complicated areas covered with loess. This can provide important evidence for researching the contact relationship among basins and mountains, structural feature of target layers and predict favourable areas.展开更多
The Balakot Formation foreland basin sediments, located in the Hazara\|Kashmir syntaxis, Pakistan, consist of a >8km thick succession of clastic red beds and calcrete, interpreted as deposited in a tidal environmen...The Balakot Formation foreland basin sediments, located in the Hazara\|Kashmir syntaxis, Pakistan, consist of a >8km thick succession of clastic red beds and calcrete, interpreted as deposited in a tidal environment. Within this sequence are intercalated four distinct grey fossiliferous marl and silt units, 20~60m thick, dated at Late Palaeocene to Mid Eocene (Bossart & Ottiger 1989). Thus the Balakot Formation has been interpreted as the oldest continental foreland basin deposits and has been used to determine the timing of India\|Eurasia collision (Rowley 1996) which has implications for the degree of diachroneity of collision (Burbank et al. 1996; Uddin and Lundberg 1998) and rapidity of metamorphism (Treloar 1997), to interpret the palaeotectonics and palaeogeography of the mountain belt (Critelli and Garzanti 1994; Pivnik and Wells 1996), understand the relationship between mountain belt evolution and exhumation processes (Treloar et al. 1991) and construct models of foreland basin evolution and geometry (DeCelles et al. 1998; Burbank et al 1996).展开更多
Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpr...Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.展开更多
In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary res...In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.展开更多
Most of the Mesozoic and Cenozoic large-scale hydrocarbon-bearing basins in western China were formed in a similar foreland setting. Hydrocarbon exploration of the Kuqa foreland basin requires research into the sedime...Most of the Mesozoic and Cenozoic large-scale hydrocarbon-bearing basins in western China were formed in a similar foreland setting. Hydrocarbon exploration of the Kuqa foreland basin requires research into the sedimentary characteristics and filling evolution of the depositional sequences and their response to the basin process. Based on an analysis of outcrops, well logs and high resolution seismic data, the sedimentary system types and distribution characteristics of the Paleogene in the east part of Kuqa foreland basin were systematically studied. The results show that: ( 1 ) Three types of sedimentary systems are developed in the area: an oxidative salty wide shallow lacustrine system, a fan delta system and an evaporitic bordersea system. (2) The configuration and evolution of the depositional systems of the Paleogene in the Kuqa foreland basin were predominantly determined by foreland tectonism. Vertically, the Paleogene sedimentary sequence can be divided into three parts: the lower, middle and upper depositional system tracts. The lower and upper tracts commonly consist of progradational or aggradational sequences, while the middle part is usually comprised of a set of aggradational to transgressive third-order sequences. Laterally, the sedimentary systems in the east part of the Kuqa foreland basin spread from east to west as a whole, and the sedimentary facies obviously vary from south to north. The sand bodies of the delta front facies are excellent gas reservoirs, characterized by rather thick, extensive and continuous distribution, high porosity and permeability, and just a few barrier beds.展开更多
Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the character...Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.展开更多
基金Supported by the National Natural Science Foundation of China (41902118)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B141)+1 种基金Natural Science Foundation of Heilongjiang Province (LH2021D003)Heilongjiang Postdoctoral Fund (No.LBH-Z20045)。
文摘Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.
基金financially supported by the program of the National Natural Science Foundation of China(No.42072134)the Major Research Project on the Tethys Geodynamic System from the National Science Foundation of China(No.92055204)the Major Scientific and Technological Projects of the CNPC under Grant ZD2019-183-001。
文摘We investigated diagenesis of the sandstones from the DN2 Gas Field of the Kuqa Foreland Basin(KFB),in order to infer the timing of fluid migration and discuss the linkage between fluids and tectonics.The textures and chemical composition of authigenic minerals,fluid evidence from fluid inclusions and formation water measurements were all used to fulfill this aim.Eodiagenesis occurred with the participation of meteoric water and connate water.Mesodiagenesis is related to high salinity fluids,which were attributed as originating from the overlying Neogene Jidike Formation evaporite(principal minerals including halite,anhydrite,glauberite,carnallite and thenardite).The onset of high salinity fluid migration is inferred to occur during the late Miocene(12.4-9.2 Ma)through the use of homogenization temperatures measured in the present study and K-Ar dating of authigenetic illites from previous work.This period is consistent with the crucial phase(13-10 Ma)that witnessed the rapid uplift of the southern Tianshan Mts and the stage when calcite and anhydrite veins formed in the studied strata.We thus argue that diagenesis related to high salinity fluids occurred as a response to the Tianshan Mts'rapid uplift and related tectonic processes.The flow of high salinity fluids was probably driven by a density gradient and channeled and focused by fractures formed contemporaneously.
基金the National Natural Science Foundation of china (poject No. 49070140)
文摘Based on fission track dating of apatite, and measurement of vitrinite reflectance of rock samples from the Longmenshan (Longmen Mountain)area and the West Sichuan foreland basin and computer modelling it is concluded that (l)the Songpan-Garze fold belt has uplifted at least by 3-4 km with an uplift rate of no less than 0.3-0.4 mm/a since 10 Ma B.P.; (2) the Longmenshan thrust nappe belt has uplifted at least by 5-6 km with an uplift rate of more than 0.5- 0.6 mm /a since 10 Ma B.P.; (3) the Longmenshan detachment belt has uplifted by 1 - 2 km at a rate of 0.016-0.032 mm/a since 60 Ma B.P.; (4) the West Sichuan foreland basin has uplifted by 1.7-3 km at a rate of 0.028-0.05 mm/a since 60 Ma B.P.; (5) the uplift rate of the area on the west side of the Beichuan-Yingxiu-Xiaoguanzi fault for the last 10 Ma is 40 times as much as that on its east side; (6) the uplifting of the the Songpan - Garze fold belt and the subsidence of the West Sichuan foreland basin 60 Ma ago exhibit a mirro-image correlation, i.e. the rapid uplifting of the the Songpan-Garze fold belt was corresponding to the rapid subsidence of the basin;the Songpan-Garze fold belt has uplifted at a much greater rate than the West Sichuan foeland basin in the last 60 Ma;and (7) the palaeogeothermal gradient was 25℃ /km in the West Sichuan foreland basin.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
基金supported by the Foundation Project of State Key Laboratory of Petroleum Resources and Prospecting (PRPDX2008-05)the "973" National Key Basic Research Program (2006CB202308)
文摘Neotectonic movement refers to the tectonic movement that has happened since the Cenozoic, which is the latest movement. It has the most important influence on the basins in west China, especially on the hydrocarbon accumulation in the western foreland basins. We determined the time of neotectonic movement in the Kuqa Foreland Basin, which began from the Neogene, and analyzed the patterns of movement, which were continuous and fast subsidence in the vertical direction and intense lateral compression. The structure styles are that the faulting is weakened and the folding is strengthened gradually from north to south. We studied the control of neotectonic movement on the hydrocarbon accumulation process and model in the Kuqa Foreland Basin with basin simulation technique. The largest subsidence rate of the Kuqa Foreland Basin reached 1,200 m/Ma during the neotectonic movement, leading to rapid maturing of source rock within 5 Ma and a large quantity of hydrocarbon being generated and expelled. The thick neotectonic strata can form high quality reservoirs with the proved gas and oil reserves accounting for 5% and 27% of the total reserves, respectively. 86% of the structural traps were formed in the neotectonic movement period. The faults formed during the neotectonic movement serve as important migration pathways and they exist in the region where the hydrocarbon reservoirs are distributed. Abnormally high pressure caused by the intense lateral compression, thick neotectonic strata deposition and rapid hydrocarbon generation provide driving force for hydrocarbon migration. The accumulation elements match each other well over a short period, leading to many large gas fields formed later in the Kuqa Foreland Basin.
基金sponsored by the 10th Five-year Major Development Program of China(2001BA616A, 2004BA616A) from 2001 to 2005,the 10th and 11th Five-year main program of Petrochina(06-01A-02-01,2008B- 0202) and the State Key Laboratory of EOR
文摘Foreland basin represents one of the most important hydrocarbon habitats in central and western China. To distinguish these foreland basins regionally, and according to the need of petroleum exploration and favorable exploration areas, the foreland basins in central and western China can be divided into three structural types: superimposed, retrogressive and reformative foreland basin (or thrust belt), each with distinctive petroleum system characteristics in their petroleum system components (such as the source rock, reservoir rock, caprock, time of oil and gas accumulation, the remolding of oil/gas reservoir after accumulation, and the favorable exploration area, etc.). The superimposed type foreland basins, as exemplified by the Kuqa Depression of the Tarim Basin, characterized by two stages of early and late foreland basin development, typically contain at least two hydrocarbon source beds, one deposited in the early foreland development and another in the later fault-trough lake stage. Hydrocarbon accumulations in this type of foreland basin often occur in multiple stages of the basin development, though most of the highly productive pools were formed during the late stage of hydrocarbon migration and entrapment (Himalayan period). This is in sharp contrast to the retrogressive foreland basins (only developing foreland basin during the Permian to Triassic) such as the western Sichuan Basin, where prolific hydrocarbon source rocks are associated with sediments deposited during the early stages of the foreland basin development. As a result, hydrocarbon accumulations in retrogressive foreland basins occur mainly in the early stage of basin evolution. The reformative foreland basins (only developing foreland basin during the Himalayan period) such as the northern Qaidam Basin, in contrast, contain organic-rich, lacustrine source rocks deposited only in fault-trough lake basins occurring prior to the reformative foreland development during the late Cenozoic, with hydrocarbon accumulations taking place relatively late (Himalayan period). Therefore, the ultimate hydrocarbon potentials in the three types of foreland basins are largely determined by the extent of spatial and temporal matching among the thrust belts, hydrocarbon source kitchens, and regional and local caprocks.
基金This research received financial supports from the National Natural Science Foundation of China(grant 40172076)the National Major Fundamental Research and Development Project(grant G1999043305)the National Key Project of the Ninth Five—Year Plan(grant 99—1111)
文摘The tectono-stratigraphic sequences of the Kuqa foreland fold-thrust belt in the northern Tarim basin, northwest China, can be divided into the Mesozoic sub-salt sequence, the Paleocene-Eocene salt sequence and the Oligocene-Quaternary supra-salt sequence. The salt sequence is composed mainly of light grey halite, gypsum, marl and brown elastics. A variety of salt-related structures have developed in the Kuqa foreland fold belt, in which the most fascinating structures are salt nappe complex. Based on field observation, seismic interpretation and drilling data, a large-scale salt nappe complex has been identified. It trends approximately east-west for over 200 km and occurs along the west Qiulitag Mountains. Its thrusting displacement is over 30 km. The salt nappe complex appears as an arcuate zone projecting southwestwards along the leading edge of the Kuqa foreland fold belt. The major thrust fault is developed along the Paleocene-Eocene salt beds. The allochthonous nappes comprise large north-dipping faulting monoclines which are made up of Paleocene-Pliocene sediments. Geological analysis and cross-section restoration revealed that the salt nappes were mainly formed at the late Himalayan stage (c.a. 1.64 Ma BP) and have been active until the present day. Because of inhomogeneous thrusting, a great difference may exist in thrust displacement, thrust occurrence, superimposition of allochthonous and autochthonous sequences and the development of the salt-related structures, which indicates the segmentation along the salt nappes. Regional compression, gravitational gliding and spreading controlled the formation and evolution of the salt nappe complex in the Kuqa foreland fold belt.
文摘The Triassic in the Longmengshan foreland basin is rich in oil and gas resources. Its reservoirs feature low-porosity, low-permeability, small pore throat, high water saturation, and strong heterogeneity. The existence of abnormally high pressure and various reservoir-cap combinations developed at different times provide favorable conditions for trapping oil and gas. Taking the theory of petroleum systems as a guide, and beginning with research on tectonics, sedimentary history, distribution and evolution of source rocks, reservoir evolution, hydraulic force distribution, and hydrocarbon migration, analysis and study of static factors like source rocks, reservoirs and cap rocks, and dynamic factors such as hydrocarbon generation, migration, and accumulation revealed the characteristics of the Upper Triassic petroleum system in western Sichuan province. The deepbasin gas in the central hydrocarbon kitchen of the Upper Triassic, structural-lithological combination traps on the surrounding slopes, and the structural traps of the Indo-Chinese-Yangshan paleohighs, are potential plays. The relatively well- developed fault zones in the southern segment of the Longmengshan foothill belt are favorable Jurassic gas plays. Pengshan-Xinjin, Qiongxi, and Dayi are recent exploration targets for Jurassic oil/gas reservoirs.
基金funded by the National Natural Science Foundation of China(Grant No.41502116,40841010,40972083,41172162,41372114,and 41340005)the National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Grant No.SK–0801)
文摘The coseismic surface uplift of the Longmen Shan(LMS) created an instantaneous topographic load over the western margin of the Sichuan Basin, where surface subsidence, decreasing eastward, has been measured using several methods, such as GPS, SAR and levelling. Using an elastic flexural model, we aim to interpret the coseismic surface uplift and subsidence, and constrain the effective lithospheric elastic thickness(Te) of the Sichuan Basin. Using different effective elastic thickness values for the Sichuan Basin, a series of subsidence curves were computed by the elastic flexure model equation for a broken elastic plate. The curves, produced by models using an effective elastic thickness of 30–40 km, provided the best fit to the general pattern of observed coseismic subsidence of the Sichuan Basin. However, the calculated subsidence(-40–70 cm) at the front of the LMS is evidently lower than the observed values(-100 cm), suggesting that the effective elastic thickness therein should be lower. These results indicate that the lithospheric strength may decrease westward from the Sichuan Basin to the LMS.
基金funded by China National Natural Science Foundation(No:41372114,41502116,41340005,40841010,40972083,41172162,and 41402159)geological survey from China Geological Survey(No:121201010000150004–08 and 12120115004501–01)the project of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(No:SK–0801)
文摘Depending on the analysis of the coeval sedimentary geometry and subsidence mechanism in the Longmen Shan foreland basin, three models about the coupling relationship between Longmen Shan uplift and foreland basin subsidence since the Indosinian have been proposed:(1) crustal shortening and its related wide wedge-shaped foreland basin,(2) crustal isostatic rebound and its related tabular foreland basin, and(3) lower crustal flow and its related narrow wedge-shaped foreland basin. Based on the narrow wedge-shaped foreland basin developed since 4 Ma, it is believed that the narrow crustal shortening and tectonic load driven by lower crustal flow is a primary driver for the present Longmen Shan uplift and the Wenchuan(Ms 8.0) earthquake.
基金This study was sponsored by a major basic theoretical project of the Ministry of Geology and Mineral Resources (No. 8502204) supported by the National Natural Science Foundation of China Grant No. 48970110
文摘Characteristics of deformation in the thrust belt and sequence stratigraphic framework in the foreland basin, structural features of the basin margin, and the episodic thrusting are studied in this paper by combining the eastern Qilian thrust belt and the Late Triassic foreland basin on the southwestern margin of Ordos. On this basis, a geological model and a mechanical model of coupling mechanism were established for the pair of thrust belt and foreland basin, and the subsidence and deposition process of the foreland basin were simulated on given parameters.
文摘A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study results, combined with geological analyses of the basin's periphery and the basement, as well as studies of the sedimentary rocks within the basin, the unconformities, tectonic geometry, kinematics and geodynamics, lead to the conclusion that the Junggar basin was characterized by the development of foreland basin systems during the Late Carboniferous and Permian. During that period, three foreland basin systems were developed: (1) the northwest foreland basin system, which trended nearly north-south from Mahu to the Chepaizi Palaeo-mountain during its early stage of development and thus it was also referred to as the west foreland basin system; (2) the Karamaili foreland basin system in the east and (3) the Northern Tianshan foreland basin system in the south. These systems are different in size, development stage and time of formation. The first two are developed earlier than the third, but they are smaller in size. All the structures in the Junggar basin have resulted from the integration and superposition of structural elements in the above three systems. In general, the development of the Junggar basin can be divided into four stages. Stage I was marked by the creation and evolution of the marginal western foreland and the peripheral Karamaili foreland basin systems during the Late Carboniferous-early Early Permian (C3P1ja). Stage II was characterized by the development of complicated foreland basin systems during the middle-late Early Permian (P1jb-P1f) when the three foreland basin systems took their shapes. Stage III was the integration stage of peripheral foreland basin systems during the Middle Permian (P2) in which steady and slow tectonic subsidence prevailed. Stage IV coincided with the shrinking of foreland basin development during the Late Permian (P3).
文摘The Longmenshan thrust system consists of two major groups of structural styles according to the depth of their involvement: basement thrusts-compressional fault blocks; fold-thrust system in the cover. In cross-section, the Longmenshan structural belt is divided into 5 zones. The propagation of the Longmenshan thrust system is piggy-back due to pushing at the early stage and overstep due to gravity sliding at the late stage. Balanced cross-sections and palinspastic reconstruction reveal that the total sliding displacement of the thrust system amounts to 120 km. The tectonic evolution of the Tethys domain in western Sichuan has experienced 5 stages: continental break-up; ocean-continent subduction ; continent-arc collision; orogenic thrusting; uplift of western Sichuan.
基金the Project of the National Natural Science Foudation of China (Grant No.41372114,41340005,41172162,40972083)
文摘We applied the material balance principle of the denudation volume and sedimentary flux to study the denudation-accumulation system between the Longmen Mountains (Mts.) and the foreland basin. The amount of sediment in each sedimentation stage of the basin was estimated to obtain the denudation volume, erosion thickness and deposit thickness since the Late Triassic Epoch, to enable us to recover the paleoelevation of the provenance and the sedimentary area. The results show the following: (1) Since the Late Triassic Epoch, the elevation of the surface of the Longmen Mts. has uplifted from 0 m to 2751 m, and the crust of the Longmen Mts. has uplifted by 9.8 km. Approximately 72% of the materials introduced have been denuded from the mountains. (2) It is difficult to recover the paleoelevation of each stage of the Longmen Mts. foreland basin quantitatively by the present-day techniques and data. (3) The formation of the Longmen Mts. foreland basin consisted of three stages of thrust belt tectonic load and three stages of thrust belt erosional unload. During tectonic loading stages (Late Triassic Epoch, Late Jurassic-Early Cretaceous, Late Cretaceous-Miocene), the average elevation of Longmen Mts. was lower (approximately 700-1700 m). During erosional unloading stages (Early and Middle Jurassic, Middle Cretaceous and Jiaguan, Late Cenozoic), the average elevation of Longmen Mts. was high at approximately 2000-2800m.
文摘Foreland basins on the western edge of Ordos are characterized by typical loess geomorphologic features. Its surface is severely cut, and its underground geological structures are complicated.Making use of the advantage of CEMP in exploration in frontland as well as successful multi-year exploration experiences in West China, we first employed the CEMP method to conduct exploration on the western edge of the Ordos basin and its surrounding areas. The practices proved that rich and reliable geological results have been achieved with the CEMP method in complicated areas covered with loess. This can provide important evidence for researching the contact relationship among basins and mountains, structural feature of target layers and predict favourable areas.
文摘The Balakot Formation foreland basin sediments, located in the Hazara\|Kashmir syntaxis, Pakistan, consist of a >8km thick succession of clastic red beds and calcrete, interpreted as deposited in a tidal environment. Within this sequence are intercalated four distinct grey fossiliferous marl and silt units, 20~60m thick, dated at Late Palaeocene to Mid Eocene (Bossart & Ottiger 1989). Thus the Balakot Formation has been interpreted as the oldest continental foreland basin deposits and has been used to determine the timing of India\|Eurasia collision (Rowley 1996) which has implications for the degree of diachroneity of collision (Burbank et al. 1996; Uddin and Lundberg 1998) and rapidity of metamorphism (Treloar 1997), to interpret the palaeotectonics and palaeogeography of the mountain belt (Critelli and Garzanti 1994; Pivnik and Wells 1996), understand the relationship between mountain belt evolution and exhumation processes (Treloar et al. 1991) and construct models of foreland basin evolution and geometry (DeCelles et al. 1998; Burbank et al 1996).
基金PetroChina Science and Technology Development Project(2021DJ0105,2021DJ0203,2021DJ0303)National Natural Science Foundation of China(42172164,42002177)。
文摘Aiming at the differential distribution of overpressure in vertical and lateral directions in the foreland thrust belt in the southern margin of Junggar Basin,the study on overpressure origin identification and overpressure evolution simulation is carried out.Based on the measured formation pressure,drilling fluid density and well logging data,overpressure origin identification and overpressure evolution simulation techniques are used to analyze the vertical and lateral distribution patterns of overpressure,genetic mechanisms of overpressure in different structural belts and causes of the differential distribution of overpressure,and the controlling effects of overpressure development and evolution on the formation and distribution of oil and gas reservoirs.The research shows that overpressure occurs in multiple formations vertically in the southern Junggar foreland thrust belt,the deeper the formation,the bigger the scale of the overpressure is.Laterally,overpressure is least developed in the mountain front belt,most developed in the fold anticline belt,and relatively developed in the slope belt.The differential distribution of overpressure is mainly controlled by the differences in disequilibrium compaction and tectonic compression strengths of different belts.The vertical overpressure transmission caused by faults connecting the deep overpressured system has an important contribution to the further increase of the overpressure strength in this area.The controlling effect of overpressure development and evolution on hydrocarbon accumulation and distribution shows in the following aspects:When the strong overpressure was formed before reservoir becoming tight overpressure maintains the physical properties of deep reservoirs to some extent,expanding the exploration depth of deep reservoirs;reservoirs below the overpressured mudstone cap rocks of the Paleogene Anjihaihe Formation and Lower Cretaceous Tugulu Group are main sites for oil and gas accumulation;under the background of overall overpressure,both overpressure strength too high or too low are not conducive to hydrocarbon enrichment and preservation,and the pressure coefficient between 1.6 and 2.1 is the best.
基金Projects 40772198 and 50678182 supported by the National Natural Science Foundation of China09-3-094 by the Research Fund for Teaching Reform in Institutes of Higher Learning,Chongqing, China
文摘In order to determine the area for oil and gas exploration in China’s north Sichuan basin,we have divided the time during which the Longmenshan foreland basin was formed into five periods,based on the sedimentary response relationship of the foreland basin to structural evolution: 1) a late Triassic Noric period;2) an early-Middle Jurassic period;3) a late Jurassic to early Cretaceous period;4) a late Cretaceous to Paleogene-Neogene period and 5) the Quaternary period. As well,we analyzed the sedimentary environment and lithologic features of every basin-forming period. The results show that there are several favorable source-reservoir-cap assemblages in our study area,making it a major region for future oil and gas exploration in China’s northern Sichuan basin.
基金This paper is supported by the Knowledge Innovation Program of theChinese Academy of Sciences ( No . KZCX3-SW-147)the NationalKey Basic Research Development Program(No . G1999043303) .
文摘Most of the Mesozoic and Cenozoic large-scale hydrocarbon-bearing basins in western China were formed in a similar foreland setting. Hydrocarbon exploration of the Kuqa foreland basin requires research into the sedimentary characteristics and filling evolution of the depositional sequences and their response to the basin process. Based on an analysis of outcrops, well logs and high resolution seismic data, the sedimentary system types and distribution characteristics of the Paleogene in the east part of Kuqa foreland basin were systematically studied. The results show that: ( 1 ) Three types of sedimentary systems are developed in the area: an oxidative salty wide shallow lacustrine system, a fan delta system and an evaporitic bordersea system. (2) The configuration and evolution of the depositional systems of the Paleogene in the Kuqa foreland basin were predominantly determined by foreland tectonism. Vertically, the Paleogene sedimentary sequence can be divided into three parts: the lower, middle and upper depositional system tracts. The lower and upper tracts commonly consist of progradational or aggradational sequences, while the middle part is usually comprised of a set of aggradational to transgressive third-order sequences. Laterally, the sedimentary systems in the east part of the Kuqa foreland basin spread from east to west as a whole, and the sedimentary facies obviously vary from south to north. The sand bodies of the delta front facies are excellent gas reservoirs, characterized by rather thick, extensive and continuous distribution, high porosity and permeability, and just a few barrier beds.
基金Supported by the Petrochina Science and Technology Major Project(2016B-05)。
文摘Based on the data of measured formation pressure, drilling fluid density of key exploration wells and calculated pressure by well logging, combined with the analysis of natural gas geological conditions, the characteristics and formation mechanisms of formation fluid overpressure systems in different foreland basins and the relationship between overpressure systems and large-scale gas accumulation are discussed.(1) The formation mechanisms of formation overpressure in different foreland basins are different. The formation mechanism of overpressure in the Kuqa foreland basin is mainly the overpressure sealing of plastic salt gypsum layer and hydrocarbon generation pressurization in deep–ultra-deep layers, that in the southern Junggar foreland basin is mainly hydrocarbon generation pressurization and under-compaction sealing, and that in the western Sichuan foreland basin is mainly hydrocarbon generation pressurization and paleo-fluid overpressure residual.(2) There are three common characteristics in foreland basins, i.e. superimposed development of multi-type overpressure and multi-layer overpressure, strong–extremely strong overpressure developed in a closed foreland thrust belt, and strong–extremely strong overpressure developed in a deep foreland uplift area.(3) There are four regional overpressure sealing and storage mechanisms, which play an important role in controlling large gas fields, such as the overpressure of plastic salt gypsum layer, the overpressure formed by hydrocarbon generation pressurization, the residual overpressure after Himalayan uplift and denudation, and the under-compaction overpressure.(4) Regional overpressure is an important guarantee for forming large gas fields, the sufficient gas source, large-scale reservoir and trap development in overpressure system are the basic conditions for forming large gas fields, and the overpressure system is conducive to forming deep to ultra-deep large gas fields.