The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy...The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.展开更多
Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tes...Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.展开更多
The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP...The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.展开更多
The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties ...The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.展开更多
A retrogression process was applied to AA7075alloy at180,240and320°C for1,30,50,70,90and120min.After the retrogression,aging treatment was reapplied with T6conditions(120°C,24h).The mechanical properties of ...A retrogression process was applied to AA7075alloy at180,240and320°C for1,30,50,70,90and120min.After the retrogression,aging treatment was reapplied with T6conditions(120°C,24h).The mechanical properties of aged samples were determined by V-Charpy and hardness tests and also,physical properties of samples were determined by electrical conductivity tests.Moreover,microstructural properties were characterized by light microscope and transmission electron microscope.The results show that the effects of the temperature and the duration of the retrogression and reagent on the impact toughness and hardness are related to the precipitates at the grain boundary.展开更多
The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties o...The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.展开更多
A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al...A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.展开更多
In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick pl...In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.展开更多
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour...In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.展开更多
Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed t...Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed that after RRA treatment, interrupted η phases at grain boundaries and slightly wide precipitate free zones could decrease SCC susceptibility of the alloy. Lots of reticular dislocations appeared in deformation process could prevent hydrogen induced cracking, and then SCC. Abundance transgranular dispersive η' phases separated out again promoted tensile strength to 759.4 MPa. The fracture ways of the specimens were dimple fracture in dry air and sub-cleavage fracture in 3.5% NaCl solution.展开更多
Diagnostic study on two intraseasonal progressive and retrogressive progress of anomalous subtropical high in western Pacific is carried out with the aid of daily 2. 5°×2.5° grid point data of ECMWF inJ...Diagnostic study on two intraseasonal progressive and retrogressive progress of anomalous subtropical high in western Pacific is carried out with the aid of daily 2. 5°×2.5° grid point data of ECMWF inJuly and August of 1980 and 1983. It is revealed that the anomalous progression and retrosression ofthis high is intraseasonally teleconnected with that in the eastern Pacific, shown as low-ftequency wavespropagating westward along a latitudinal wave train across the northern Pacific i the same oscillatory displacement of eastern subtropical high is again triggered off by the variation of convergent sink of uppertropospheric divergent wind field in eastern Pacific, being resulted from anomalous heating from monsoon area in South Asia through trade wind zone in the Pacific Ocean.展开更多
Retrogression characteristics of a novel Al-Cu-Li-X alloy of 2A97 were studied by hardness testing, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The retrogression treatments...Retrogression characteristics of a novel Al-Cu-Li-X alloy of 2A97 were studied by hardness testing, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The retrogression treatments of aging at 155°C for 12 h followed by aging at 220 and 240°C were chosen by determining the peak temperature of δ' precipitation at 230°C by DSC. The retrogression treatment at a lower temperature of 220°C causes the precipitation and coarsening of δ' and θ' phases in the matrix, resulting in an increase in hardness. Retrogression at a higher temperature of 240°C causes the dissolution and coarsening of δ' and θ' precipitates in the matrix and on the grain boundaries, resulting in a decrease in hardness. Microstructural changes upon retrogression including the appearance of equilibrium precipitates such as T1, T2, δ', and θ are confirmed by the selected area electron diffraction and the bright and dark field image analysis.展开更多
An ordered sequence of biologic events is precursors of the birth of a healthy baby. Hormonal interactions acting as a nexus between the fetus, placenta and mother that controls the establishment and progression of pr...An ordered sequence of biologic events is precursors of the birth of a healthy baby. Hormonal interactions acting as a nexus between the fetus, placenta and mother that controls the establishment and progression of pregnancy and fetal development are very important. We examined the role of Beta-Human Chorionic Gonadotropin (<i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG) as a predictive marker. Applying radioimmunoassay that utilizes anti-sera generated from specific </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-submit of HCG we evaluated the serum </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level in 60 pregnant women in the three trimesters. Results showed that there was consistent increase in concentration that drops gradually and maintained a plateau only to drop from the 40</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> week of pregnancy. 3 subjects (5%) that had a sudden sharp drop in </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level resulted in complications. Inclusion of </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level screening and monitoring in pregnancy will raise assurance of progress or retrogression in pregnancy. We provide data that can be used as a reference range for </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG using this method.</span>展开更多
Cancer emerged in human history for centuries. It seems that while human beings are evolving, tumors are always on their heels. In order to explain and study the mechanism of tumor progression, we proposed a new hypot...Cancer emerged in human history for centuries. It seems that while human beings are evolving, tumors are always on their heels. In order to explain and study the mechanism of tumor progression, we proposed a new hypothesis that the tumor is a retrogression of life evolution, in other word, a resurgence of some past fragments in human development history. Our inference was based on the fact that tumors are not foreign diseases, but use of human inherent developmental genes to achieve self-improvement. Characteristics and biological behavior of tumor cells are similar to human normal stem cell to some degree. Thus, studying the process of human evolution could speculate and analyze the occurrence and development of tumors. The latest research showed that many cancer treatment were also taking advantages of those features about retrogression. Continuous in-depth analysis about tumor environmental characteristics and internal law of human evolution may produce new approaches to promote cancer prevention and treatment. Our hypothesis, for the first time, proposed that taking advantage of the evolution laws to reverse the tumor progression as a path of life retrogression is better than exterminating them completely as outside enemies. Some new studies on tumor induced differentiation had also demonstrated the clinical significance of our hypothesis展开更多
We report here lattice preferred orientations (LPOs) and seismic properties of eclogites from the Sulu (苏鲁) UHP terrane. Our results show strong fabrics in omphacite and amphibole, and approximately random fabri...We report here lattice preferred orientations (LPOs) and seismic properties of eclogites from the Sulu (苏鲁) UHP terrane. Our results show strong fabrics in omphacite and amphibole, and approximately random fabrics in garnet with or without strong shape preferred orientations (SPOs). Dislocation creep is likely to be responsible for the observed omphacite fabrics that vary with geometry and orientation of finite strain ellipsoid. Weak garnet LPOs suggest that garnet did not accommodate plastic strain or was not deformed by dislocation creep with a dominant slip system. The calculated seismic properties of eclogites and their component minerals show a strong correlation with their LPOs. Seismic anisotropies are mostly induced by omphacite component in fresh eclogites and by amphibole component in retrograded eclogites, respectively. Retrogression of omphaeite to amphibole and quartz will increase seismic anisotropies but decreases seismic velocities of eclogite. Garnet component increases the seismic velocities but decreases seismic anisotropies of eciogite. Comparison of the calculated and the measured seismic properties of eclogites suggests that both methods resolve comparable results with some discrepancies. Compositional layering can play a very important role in determining the seismic properties of eclogites in addition to LPO.展开更多
[Objectives] To study the clinical efficacy of needle warming through moxibustion combined with Tuina on retrogressive knee osteoarthritis, and to explore the effective treatment with traditional Chinese medicine char...[Objectives] To study the clinical efficacy of needle warming through moxibustion combined with Tuina on retrogressive knee osteoarthritis, and to explore the effective treatment with traditional Chinese medicine characteristics.[Methods] 60 patients with retrogressive knee osteoarthritis were randomly divided into control group ( n =30) and observation group ( n =30). The control group was treated with Tuina, while the observation group was treated with needle warming through moxibustion combined with Tuina. The clinical cure rate, pain score and knee symptom score were compared and analyzed.[Results] The clinical cure rate was 96.70% in the observation group and 73.30% in the control group, and the difference was statistically significant ( P <0.05). After one course of treatment, the VAS score and knee Lequesne score of the two groups were decreased ( P <0.05), and the decrease degree of the observation group was better than that of the control group ( P <0.05). The joint rest pain score, joint motion pain score, tenderness score, swelling score, morning stiffness score and walking ability score were higher than those in the treatment group ( P <0.05).[Conclusions] Needle warming through moxibustion combined with Tuina manipulation can significantly alleviate knee degenerative disease, eliminate inflammation, reduce edema, ease pain and improve the quality of life of patients.展开更多
The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from composi...The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.展开更多
Al-based metal matrix composites [MMCs] have been the research interest of a wide spectrum of material scientists throughout the world for some over two decades now. The present paper has chosen one alloy system namel...Al-based metal matrix composites [MMCs] have been the research interest of a wide spectrum of material scientists throughout the world for some over two decades now. The present paper has chosen one alloy system namely the 7xxx series and from an extensive literature review concluded that since the beginning of the new millennium nothing note worthy has been added to the knowledge already gained in the last quarter of the last century except confirm the earlier findings that MMCs if properly fabricated by choosing the processing route and with appropriate size and volume fraction of dispersoids can improve most of the mechanical, corrosion and wear resistant properties of the base alloy. The author’s own research activities using this alloy system for making MMCs that include attempts to improve upon the properties by making composites, ageing and also secondary processing have been included. An attempt has been made to establish the stretch to which improvement is possible in the alloy system by making composites and trying all other routes known for meaningful improvement in properties. Further, the way forward for such particulate composites has been drawn to realise the material scientists’ dream of seeing such MMCs as engineering components. For this, the areas which now need research include mass production of composites, focus on its machining, joining, processing as also reduction in the size of dispersoids are some of the areas that have been identified and discussed in the paper.展开更多
In order to sustain and increase students' interest in learning English, we tried to design several motivational approaches based on teaching psychology and pedagogy so as to improve our English teaching. The three o...In order to sustain and increase students' interest in learning English, we tried to design several motivational approaches based on teaching psychology and pedagogy so as to improve our English teaching. The three orientations were identified to be the principles for the study: 1.Inspiration out of tracing the retrogression to its source; 2.Stimulating learning through integrative internal and external drives; 3.Providing chances to get more inspiration of creativity. The study of integrative motivation was made for two years, which turned out to be efficacious in our English teaching when it was finished.展开更多
In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamo...In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.展开更多
基金National Natural Science Foundation of China(No.51974352 and No.52288101)China University of Petroleum(East China)(No.2018000025 and No.2019000011)。
文摘The long-term strength retrogression of silica-enriched oil well cement poses a significant threat to wellbore integrity in deep and ultra-deep wells, which is a major obstacle for deep petroleum and geothermal energy development. Previous attempts to address this problem has been unsatisfactory because they can only reduce the strength decline rate. This study presents a new solution to this problem by incorporating fly ash to the traditional silica-cement systems. The influences of fly ash and silica on the strength retrogression behavior of oil well cement systems directly set and cured under the condition of 200°C and 50 MPa are investigated. Test results indicate that the slurries containing only silica or fly ash experience severe strength retrogression from 2 to 30 d curing, while the slurries containing both fly ash and silica experience strength enhancement from 2 to 90 d. The strength test results are corroborated by further evidences from permeability tests as well as microstructure analysis of set cement. Composition of set cement evaluated by quantitative X-ray diffraction analyses with partial or no known crystal structure(PONKCS) method and thermogravimetry analyses revealed that the conversion of amorphous C-(A)-S-H to crystalline phases is the primary cause of long-term strength retrogression.The addition of fly ash can reduce the initial amount of C-(A)-S-H in the set cement, and its combined use with silica can prevent the crystallization of C-(A)-S-H, which is believed to be the working mechanism of this new admixture in improving long-term strength stability of oil well cement systems.
基金Projects (2010CB731701,2012CB619502) supported by the National Basic Research Program of ChinaProject (50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.
基金Project(2012CB619505)supported by the National Basic Research Program of China
文摘The retrogression kinetics for grain boundary precipitate (GBP) of 7A55 aluminum alloy was investigated by transmission electron microscopy (TEM) observation. The results reveal that the coarsening behavior of GBP obeys “LSW” theory, namely, the cube of GBP average size has a linear dependence relation to retrogression time, and the coarsening rate accelerates at the elevated retrogression temperature. The GBP coarsening activation energy Qo of (115.2±1.3) kJ/mol is obtained subsequently. Taking the retrogression treatment schedule of 190℃, 45 min derived from AA7055 thin plate as reference, the non-isothermal retrogression model for GBP coarsening behavior is established based on “LSW”theory and “iso-kinetics” solution, which includes an Arrhenius form equation. After that, the average size of GBP r(t) is predicted successfully at any non-isothermal process T(t) when the initial size of GBP r0 is given. Finally, the universal characterization method for the microstructure homogeneity along the thickness direction of TA55 aluminum alloy thick plate is also set up.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.
基金supported by Yildiz Technical University Scientific Research Project Unit under Contract No:2016-07-02-DOP02
文摘A retrogression process was applied to AA7075alloy at180,240and320°C for1,30,50,70,90and120min.After the retrogression,aging treatment was reapplied with T6conditions(120°C,24h).The mechanical properties of aged samples were determined by V-Charpy and hardness tests and also,physical properties of samples were determined by electrical conductivity tests.Moreover,microstructural properties were characterized by light microscope and transmission electron microscope.The results show that the effects of the temperature and the duration of the retrogression and reagent on the impact toughness and hardness are related to the precipitates at the grain boundary.
基金Project(2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.
基金Project(2017YFB0306300) supported by the National key R&D Program of ChinaProjects(51675538, 51905551)supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2019-11) supported by Free Exploration Project of State Key Laboratory of High performance Complex Manufacturing,China。
文摘A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment.
基金Project(51801082) supported by National Natural Science Foundation of ChinaProjects(GY2021003, GY2021020)supported by the Key Research and Development Program of Zhenjiang City,China+1 种基金Project(KYCX21_3453) supported by Graduate Research and Innovation Projects in Jiangsu Province,ChinaProject(202110289002Z) supported by Undergraduate Innovation and Entrepreneurship Training Program of Jiangsu Province,China。
文摘In order to improve the through-thickness homogeneity and properties of aviation aluminum alloy thick plate.The effect of heating-cooling retrogression and re-ageing on the performance of Al-8Zn-2Mg-2Cu alloy thick plate was investigated by hardness tests, electrical conductivity tests and transmission electron microscopy(TEM) observation.Results revealed that, during retrogression heating, the fine pre-precipitates in surface layer dissolve more and the undissolved η′ or η phases are more coarsened than that of center layer. During slow cooling after retrogression,precipitates continue coarsening but with a lower rate and the secondary precipitation occurs in both layers. Finer precipitates resulting from the secondary precipitation are more in surface. However, the coarsening and secondary precipitation behaviors are restrained in both layers under quick cooling condition. The electrical conductivity and through-thickness homogeneity of precipitates increases while the hardness decreases with cooling rate decreasing. After the optimized non-isothermal retrogression and re-ageing(NRRA) including air-cooling retrogression, the throughthickness homogeneity which is evaluated by integrated retrogression effects has been improved to 94%. The tensile strength, fracture toughness and exfoliation corrosion grade of Al-8Zn-2Mg-2Cu alloy plate is 619 MPa, 24.7 MPa·m^(1/2)and EB, respectively, which indicates that the non-isothermal retrogression and re-aging(NRRA) could improve the mechanical properties and corrosion resistance with higher through-thickness homogeneity.
基金Financial support comes from China National Natural Science Foundation(Grant No.51974352)as well as from China University of Petroleum(East China)(Grant Nos.2018000025 and 2019000011)。
文摘In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases.
文摘Stress corrosion cracking (SCC) resistance of a spray formed Al-Zn-Mg-Cu alloy underwent retrogression and reaging (RRA) was studied by slow strain rate tests in dry air and 3.5 wt% NaCl solution. The results showed that after RRA treatment, interrupted η phases at grain boundaries and slightly wide precipitate free zones could decrease SCC susceptibility of the alloy. Lots of reticular dislocations appeared in deformation process could prevent hydrogen induced cracking, and then SCC. Abundance transgranular dispersive η' phases separated out again promoted tensile strength to 759.4 MPa. The fracture ways of the specimens were dimple fracture in dry air and sub-cleavage fracture in 3.5% NaCl solution.
文摘Diagnostic study on two intraseasonal progressive and retrogressive progress of anomalous subtropical high in western Pacific is carried out with the aid of daily 2. 5°×2.5° grid point data of ECMWF inJuly and August of 1980 and 1983. It is revealed that the anomalous progression and retrosression ofthis high is intraseasonally teleconnected with that in the eastern Pacific, shown as low-ftequency wavespropagating westward along a latitudinal wave train across the northern Pacific i the same oscillatory displacement of eastern subtropical high is again triggered off by the variation of convergent sink of uppertropospheric divergent wind field in eastern Pacific, being resulted from anomalous heating from monsoon area in South Asia through trade wind zone in the Pacific Ocean.
基金supported by the Major State Basic Research Development Program of China (No.2005CB623705)
文摘Retrogression characteristics of a novel Al-Cu-Li-X alloy of 2A97 were studied by hardness testing, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). The retrogression treatments of aging at 155°C for 12 h followed by aging at 220 and 240°C were chosen by determining the peak temperature of δ' precipitation at 230°C by DSC. The retrogression treatment at a lower temperature of 220°C causes the precipitation and coarsening of δ' and θ' phases in the matrix, resulting in an increase in hardness. Retrogression at a higher temperature of 240°C causes the dissolution and coarsening of δ' and θ' precipitates in the matrix and on the grain boundaries, resulting in a decrease in hardness. Microstructural changes upon retrogression including the appearance of equilibrium precipitates such as T1, T2, δ', and θ are confirmed by the selected area electron diffraction and the bright and dark field image analysis.
文摘An ordered sequence of biologic events is precursors of the birth of a healthy baby. Hormonal interactions acting as a nexus between the fetus, placenta and mother that controls the establishment and progression of pregnancy and fetal development are very important. We examined the role of Beta-Human Chorionic Gonadotropin (<i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG) as a predictive marker. Applying radioimmunoassay that utilizes anti-sera generated from specific </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-submit of HCG we evaluated the serum </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level in 60 pregnant women in the three trimesters. Results showed that there was consistent increase in concentration that drops gradually and maintained a plateau only to drop from the 40</span><sup><span style="font-family:Verdana;">th</span></sup><span style="font-family:Verdana;"> week of pregnancy. 3 subjects (5%) that had a sudden sharp drop in </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level resulted in complications. Inclusion of </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG level screening and monitoring in pregnancy will raise assurance of progress or retrogression in pregnancy. We provide data that can be used as a reference range for </span><i><span style="font-family:Verdana;">β</span></i><span style="font-family:Verdana;">-HCG using this method.</span>
文摘Cancer emerged in human history for centuries. It seems that while human beings are evolving, tumors are always on their heels. In order to explain and study the mechanism of tumor progression, we proposed a new hypothesis that the tumor is a retrogression of life evolution, in other word, a resurgence of some past fragments in human development history. Our inference was based on the fact that tumors are not foreign diseases, but use of human inherent developmental genes to achieve self-improvement. Characteristics and biological behavior of tumor cells are similar to human normal stem cell to some degree. Thus, studying the process of human evolution could speculate and analyze the occurrence and development of tumors. The latest research showed that many cancer treatment were also taking advantages of those features about retrogression. Continuous in-depth analysis about tumor environmental characteristics and internal law of human evolution may produce new approaches to promote cancer prevention and treatment. Our hypothesis, for the first time, proposed that taking advantage of the evolution laws to reverse the tumor progression as a path of life retrogression is better than exterminating them completely as outside enemies. Some new studies on tumor induced differentiation had also demonstrated the clinical significance of our hypothesis
基金supported by the National Natural Science Foundation of China (Nos. 90714010, 90714005, 40821061, 40702034)the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (Nos. B07039, 2007B25)+1 种基金National Basic Research Program of China (No. 2009CB825003)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
文摘We report here lattice preferred orientations (LPOs) and seismic properties of eclogites from the Sulu (苏鲁) UHP terrane. Our results show strong fabrics in omphacite and amphibole, and approximately random fabrics in garnet with or without strong shape preferred orientations (SPOs). Dislocation creep is likely to be responsible for the observed omphacite fabrics that vary with geometry and orientation of finite strain ellipsoid. Weak garnet LPOs suggest that garnet did not accommodate plastic strain or was not deformed by dislocation creep with a dominant slip system. The calculated seismic properties of eclogites and their component minerals show a strong correlation with their LPOs. Seismic anisotropies are mostly induced by omphacite component in fresh eclogites and by amphibole component in retrograded eclogites, respectively. Retrogression of omphaeite to amphibole and quartz will increase seismic anisotropies but decreases seismic velocities of eclogite. Garnet component increases the seismic velocities but decreases seismic anisotropies of eciogite. Comparison of the calculated and the measured seismic properties of eclogites suggests that both methods resolve comparable results with some discrepancies. Compositional layering can play a very important role in determining the seismic properties of eclogites in addition to LPO.
基金Supported by Graduate Innovation Program of Bengbu Medical University(BYYCX1981).
文摘[Objectives] To study the clinical efficacy of needle warming through moxibustion combined with Tuina on retrogressive knee osteoarthritis, and to explore the effective treatment with traditional Chinese medicine characteristics.[Methods] 60 patients with retrogressive knee osteoarthritis were randomly divided into control group ( n =30) and observation group ( n =30). The control group was treated with Tuina, while the observation group was treated with needle warming through moxibustion combined with Tuina. The clinical cure rate, pain score and knee symptom score were compared and analyzed.[Results] The clinical cure rate was 96.70% in the observation group and 73.30% in the control group, and the difference was statistically significant ( P <0.05). After one course of treatment, the VAS score and knee Lequesne score of the two groups were decreased ( P <0.05), and the decrease degree of the observation group was better than that of the control group ( P <0.05). The joint rest pain score, joint motion pain score, tenderness score, swelling score, morning stiffness score and walking ability score were higher than those in the treatment group ( P <0.05).[Conclusions] Needle warming through moxibustion combined with Tuina manipulation can significantly alleviate knee degenerative disease, eliminate inflammation, reduce edema, ease pain and improve the quality of life of patients.
基金The Aluminium Corporation of China Ltd.(Chalco)for supporting aspects of this work financiallyproviding AA7150 materials as part of the Australia-China International Centre for Light Alloy Research(ICLAR)+1 种基金Monash University for developing the retrogression and reageing Matlab model (as part of the PhD project of Dr Adrian GROSVENOR)The ARC Centre of Excellence for Design in Light Metals and its Directors (first Prof Barry MUDDLE and then Prof Xin-hua WU) for supporting
文摘The 7xxx series alloys are heat treatable wrought aluminium alloys based on the Al-Zn-Mg(-Cu) system. They are widely used in high-performance structural aerospace and transportation applications. Apart from compositional, casting and thermo-mechanical processing effects, the balance of properties is also significantly influenced by the way in which the materials are heat-treated. This paper describes the effects of homogenisation, solution treatment, quenching and ageing treatments on the evolution of the microstructure and properties of some important medium to high-strength 7xxx alloys. With a focus on recent work at Monash University, where the whole processing route from homogenisation to final ageing has been studied for thick plate products, it is reported how microstructural features such as dispersoids, coarse constituent particles, fine-scale precipitates, grain structure and grain boundary characteristics can be controlled by heat treatment to achieve improved microstructure-property combinations. In particular, the paper presents methods for dissolving unwanted coarse constituent particles by controlled high- temperature treatments, quench sensitivity evaluations based on a systematic study of continuous cooling precipitation behaviour, and ageing investigations of one-, two- and three-step ageing treatments using experimental and modelling approaches, in each case, the effects on both the microstructure and the resulting properties are discussed.
文摘Al-based metal matrix composites [MMCs] have been the research interest of a wide spectrum of material scientists throughout the world for some over two decades now. The present paper has chosen one alloy system namely the 7xxx series and from an extensive literature review concluded that since the beginning of the new millennium nothing note worthy has been added to the knowledge already gained in the last quarter of the last century except confirm the earlier findings that MMCs if properly fabricated by choosing the processing route and with appropriate size and volume fraction of dispersoids can improve most of the mechanical, corrosion and wear resistant properties of the base alloy. The author’s own research activities using this alloy system for making MMCs that include attempts to improve upon the properties by making composites, ageing and also secondary processing have been included. An attempt has been made to establish the stretch to which improvement is possible in the alloy system by making composites and trying all other routes known for meaningful improvement in properties. Further, the way forward for such particulate composites has been drawn to realise the material scientists’ dream of seeing such MMCs as engineering components. For this, the areas which now need research include mass production of composites, focus on its machining, joining, processing as also reduction in the size of dispersoids are some of the areas that have been identified and discussed in the paper.
文摘In order to sustain and increase students' interest in learning English, we tried to design several motivational approaches based on teaching psychology and pedagogy so as to improve our English teaching. The three orientations were identified to be the principles for the study: 1.Inspiration out of tracing the retrogression to its source; 2.Stimulating learning through integrative internal and external drives; 3.Providing chances to get more inspiration of creativity. The study of integrative motivation was made for two years, which turned out to be efficacious in our English teaching when it was finished.
文摘In the gneisses from the drillhole ZK2304 of the Donghai area, there have been preserved high- and ultrahigh-pressure metamorphic mineral assemblages, a series of complicated retrogressive textures and relevant metamorphic reactions. In addition to garnet, jadeititic-clinopyroxene and rutile, other peak stage (M2) minerals in some gneisses include phengite, aragonite and coesite or quartz pseudomorphs after coesite. The typical peak-stage mineral assemblages in gneisses are characterized by garnet + jadeitic-clinopyroxene + rutile + coesite, garnet + jadeitic-clinopyroxene + phengite + rutile ± coesite and garnet + jadeitic-clinopyroxene + aragonite + rutile ± coesite. The grossular content (Gro) in garnet is high and may reach 50. 1 mol%. The SiO2 content of phengite ranges from 54.37% to 54.84% with 3.54-3.57 p.f.u. Quartz pseudomorphs after coesite occur as inclusions in garnet.The gneisses of the Donghai area have been subjected to multistage recrystallization and exhibit a closewise P-T evolutional path characterized by the near-isothermal decompression. The inclusion assemblage (Hb+Ep+Bi+Pl+Qz) within garnet and other minerals has recorded a pre-peak stage (Mi) epidote amphibole fades metamorphic event. High- and ultrahigh-pressure peak metamorphism (M2) took place at T=750-860℃ and P>2.7 GPa. The symplectitic assemblages after garnet, jadeitic-clinopyroxene and rutile imply a near-isothermal decompression metamorphism (M3, M4) during the rapid exhumation. Several lines of evidence of petrography and metamorphic reactions indicate that both gneisses and eclogites have experienced ultrahigh-pressure metamorphism in the Donghai area. This research may be of great significance for an in-depth study of the metamorphism and tectonic evolution in the Su-Lu ultrahigh-pressure metamorphic belt.