The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties o...The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.展开更多
The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties ...The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.展开更多
基金Project(2006AA03Z523) supported by the National High-tech Research and Development Program of China
文摘The mechanical properties and stress corrosion cracking (SCC) resistance of an Al-Zn-Cu-Mg-Sc-Zr alloy under different aging conditions were investigated. The dependence of microstrueture and mechanical properties on aging parameters was evaluated by tensile test, hardness test and conductivity measurement. The results show that for the alloys with retrogression and re-aging treatment (RRA), the conductivity increases with the retrogression time and temperature, while the tensile strength decreases. The transmission electron microscopy (TEM) results show that the precipitates η(MgZn2) at grain boundary aggregate apparently with retrogression time and the precipitates inside the matrix exhibit the similar distribution to T6 temper, which comprises fine GP zones, large η'(MgZn2)and η(MgZn2) phases. According to the mechanical properties and microstructure observations, the optimal RRA regime is recommended to be 120℃, 24h + 180 ℃, 30 min + 120 ℃, 24 h. The strength level of the alloy after the optimum RRA treatment is similar to that in T6 condition and the SCC resistance is improved obviously in contrast to T6 condition.
基金Project(2005CB623700) supported by the National Basic Research Program of China
文摘The effects of the retrogression heating rate(340℃/min,57℃/min,4.3℃/min)on the microstructures and mechanical properties of aluminum alloy 7050 were investigated by means of hardness measurement,tensile properties testing,differential scanning calorimetry(DSC)and transmission electron microscopy(TEM).The results show that the retrogression heating rate significantly affects the microstructures and mechanical properties of the alloys treated by retrogression and re-aging(RRA)process, and it is found that the medium rate(57℃/min)leads to the highest mechanical properties.The strengthening phases in the matrix are mainly the fine dispersed η′precipitates and GP zones,and the grain boundary precipitates are coarse and discontinuous η phases.