A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited rin...A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.展开更多
Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probabl...Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.展开更多
文摘A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.
基金Project supported by the National Natural Science Foundation of China(No.61671203)。
文摘Over-the-air(OTA)testing is an industry standard practice for evaluating transceiver performance in wireless devices.For the fifth generation(5G)and beyond wireless systems with high integration,OTA testing is probably the only reliable method to accurately measure the transceiver performance,suitable for certification as well as for providing feedback for design verification and optimization.Further,multiple-input multiple-output(MIMO)technology is extensively applied for stable connection,high throughput rate,and low latency.In this paper,we provide an overview of the three main methods for evaluating the MIMO OTA performance,namely,the multiprobe anechoic chamber(MPAC)method,the reverberation chamber plus channel emulator(RC+CE)method,and the radiated two-stage(RTS)method,with the aim of providing a useful guideline for developing effective wireless performance testing in future 5G-and-beyond wireless systems.