As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’...As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.展开更多
This paper reports that anomalous local order in liquid and glassy A1FeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. Th...This paper reports that anomalous local order in liquid and glassy A1FeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. The element Ce favours interpenetration of the icosahedra by sharing a common face and edges. It argues that frustration between this short-range order and the long-range crystalline order controls the glass-forming ability of these liquids. The obtained results suggest that a system having a stronger tendency to show local icosahedral order should be a better glass-former. This scenario also naturally explains the close relationship between the local icosahedral order in a liquid, glass-forming ability, and the nucleation barrier. Such topological local order has also been analysed directly using the reverse Monte Carlo method. It also estimated the fraction of local ordered and disordered structural units in a glassy AlFeCe alloy.展开更多
Atomic configuration and connectivity of Sb_2Te_3 thin film are investigated using high-energy X-ray diffraction and reverse Monte Carlo simulation. Atomic model details of Sb_2Te_3 thin film are compared with liquid ...Atomic configuration and connectivity of Sb_2Te_3 thin film are investigated using high-energy X-ray diffraction and reverse Monte Carlo simulation. Atomic model details of Sb_2Te_3 thin film are compared with liquid and amorphous Sb_2Te_3 reported in other article. Simulations show that both Sb–Sb and Te–Te homopolar bonds are present in the models. In phase transition process,atomic configuration of the sample rearranges gradually through the forming of Sb–Te bonds and the breaking of Sb–Sb and Te–Te bonds.展开更多
Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, ...Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.展开更多
In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various accelerati...In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.展开更多
On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and win...On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and windowed multipole as well as a method based on regression models have been developed to solve this problem.However,these methods have limitations such as the need for a cross section in an ACE format at a given temperature or a limited application energy range.In this study,a new on-the-fly Doppler broadening method based on a Back Propagation(BP)neural network,called hybrid windowed networks(HWN),is proposed to resolve the resonance energy range.In the HWN method,the resolved resonance energy range is divided into windows to guarantee an even distribution of resonance peaks.BP networks with specially designed structures and training parameters are trained to evaluate the cross section at a base temperature and the broadening coefficient.The HWN method is implemented in the Reactor Monte Carlo(RMC)code,and the microscopic cross sections and macroscopic results are compared.The results show that the HWN method can reduce the memory requirement for cross-sectional data by approximately 65%;moreover,it can generate keff,power distribution,and energy spectrum results with acceptable accuracy and a limited increase in the calculation time.The feasibility and effectiveness of the proposed HWN method are thus demonstrated.展开更多
基金This paper is supported by the Major Science and Technology Projects of Henan Province under Grant No.221100210400.
文摘As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.
基金Project supported partially by the National Natural Science Foundation of China (Grant Nos 50831003 and 50871062)New Century Excellent Talent Program of Ministry of Education of China (Grant No NCET-05-0599)+3 种基金the National Basic Research Program of China (Grant No 2007CB613901)the National Science Foundation for Distinguished Young Scholars of China (Grant No 50625101)the Scientific Research Foundation for Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No JIAO WAI SI LIU2007-1108)the National Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No JQ200817)
文摘This paper reports that anomalous local order in liquid and glassy A1FeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. The element Ce favours interpenetration of the icosahedra by sharing a common face and edges. It argues that frustration between this short-range order and the long-range crystalline order controls the glass-forming ability of these liquids. The obtained results suggest that a system having a stronger tendency to show local icosahedral order should be a better glass-former. This scenario also naturally explains the close relationship between the local icosahedral order in a liquid, glass-forming ability, and the nucleation barrier. Such topological local order has also been analysed directly using the reverse Monte Carlo method. It also estimated the fraction of local ordered and disordered structural units in a glassy AlFeCe alloy.
基金supported by the National Natural Science Foundation of China(Nos.51201178,U1232112 and 61376006)the Science and Technology Council of Shanghai(Nos.13ZR1447200 and14DZ2294900)the National Key Basic Research Program of China(No.2012CB825700)
文摘Atomic configuration and connectivity of Sb_2Te_3 thin film are investigated using high-energy X-ray diffraction and reverse Monte Carlo simulation. Atomic model details of Sb_2Te_3 thin film are compared with liquid and amorphous Sb_2Te_3 reported in other article. Simulations show that both Sb–Sb and Te–Te homopolar bonds are present in the models. In phase transition process,atomic configuration of the sample rearranges gradually through the forming of Sb–Te bonds and the breaking of Sb–Sb and Te–Te bonds.
文摘Based on Maxwell’s constraint counting theory, rigidity percolation in GexSe1-x glasses occurs when the mean coordination number reaches the value of 2.4. This corresponds to Ge0.20Se0.80 glass. At this composition, the number of constraints experienced by an atom equals the number of degrees of freedom in three dimensions. Hence, at this composition, the network changes from a floppy phase to a rigid phase, and rigidity starts to percolate. In this work, we use reverse Monte Carlo (RMC) modeling to model the structure of Ge0.20Se0.80 glass by simulating its experimental total atomic pair distribution function (PDF) obtained via high energy synchrotron radiation. A three-dimensional configuration of 2836 atoms was obtained, from which we extracted the partial atomic pair distribution functions associated with Ge-Ge, Ge-Se and Se-Se real space correlations that are hard to extract experimentally from total scattering methods. Bond angle distributions, coordination numbers, mean coordination numbers and the number of floppy modes were also extracted and discussed. More structural insights about network topology at this composition were illustrated. The results indicate that in Ge0.20Se0.80 glass, Ge atoms break up and cross-link the Se chain structure, and form structural units that are four-fold coordinated (the GeSe4 tetrahedra). These tetrahedra form the basic building block and are connected via shared Se atoms or short Se chains. The extent of the intermediate ranged oscillations in real space (as extracted from the width of the first sharp diffraction peak) was found to be around 19.6 ?. The bonding schemes in this glass are consistent with the so-called “8-N” rule and can be interpreted in terms of a chemically ordered network model.
基金supported by the National Natural Science Foundation of China(Nos.11775126,11545013,11605101)the Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)+1 种基金Science Challenge Project by MIIT of China(No.TZ2018001)Tsinghua University,Initiative Scientific Research Program。
文摘In loosely coupled or large-scale problems with high dominance ratios,slow fission source convergence can take extremely long time,reducing Monte Carlo(MC)criticality calculation efficiency.Although various acceleration methods have been developed,some methods cannot reduce convergence times,whereas others have been limited to specific problem geometries.In this study,a new fission source convergence acceleration(FSCA)method,the forced propagation(FP)method,has been proposed,which forces the fission source to propagate and accelerate fission source convergence.Additionally,some stabilization techniques have been designed to render the method more practical.The resulting stabilized method was then successfully implemented in the MC transport code,and its feasibility and effectiveness were tested using the modified OECD/NEA,one-dimensional slab benchmark,and the Hoogenboom full-core problem.The comparison results showed that the FP method was able to achieve efficient FSCA.
基金supported by the Science Challenge Project(No.TZ2018001)the National Natural Science Foundation of China(Nos.11775126,11545013,11775127)+1 种基金Young Elite Scientists Sponsorship Program by CAST(No.2016QNRC001)Tsinghua University Initiative Scientific Research Program。
文摘On-the-fly Doppler broadening of cross sections is important in Monte Carlo simulations,particularly in Monte Carlo neutronics-thermal hydraulics coupling simulations.Methods such as Target Motion Sampling(TMS)and windowed multipole as well as a method based on regression models have been developed to solve this problem.However,these methods have limitations such as the need for a cross section in an ACE format at a given temperature or a limited application energy range.In this study,a new on-the-fly Doppler broadening method based on a Back Propagation(BP)neural network,called hybrid windowed networks(HWN),is proposed to resolve the resonance energy range.In the HWN method,the resolved resonance energy range is divided into windows to guarantee an even distribution of resonance peaks.BP networks with specially designed structures and training parameters are trained to evaluate the cross section at a base temperature and the broadening coefficient.The HWN method is implemented in the Reactor Monte Carlo(RMC)code,and the microscopic cross sections and macroscopic results are compared.The results show that the HWN method can reduce the memory requirement for cross-sectional data by approximately 65%;moreover,it can generate keff,power distribution,and energy spectrum results with acceptable accuracy and a limited increase in the calculation time.The feasibility and effectiveness of the proposed HWN method are thus demonstrated.