In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linea...In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.展开更多
A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)centr...A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.展开更多
Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radia...Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.展开更多
Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The struc...Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.展开更多
In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking....In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.展开更多
Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate fail...Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate failure, 38% of which are due to instability. The primary stability the base plate ensures is a crucial factor and, thus, is the subject of much debate in clinical studies and biomechanical research. This study is aimed to provide data that will contribute to the base plate’s pri-mary stability and glenoid longevity by clarifying the stresses at the scapular fossa and base plate interface associated with elevation after RSA. A 3D finite element model was created from the DICOM data for the scapulohumeral joint and SMR shoulder system. For loading conditions, 30 N was applied for each posi-tion with abduction angles of 0, 45, 90, and 135 degrees. A three-dimensional fi-nite element analysis was performed using the static implicit method with LS-DYNA. The von Mises stresses in the scapular fossa were found not to exceed the yield stress on the bone even after elevation to an abduction angle of 135 de-grees after RSA. It is rough to uniformly compare the yield stress and the von Mises stress, but it was inferred that the possibility of fracture is low unless a large external force is applied. A maximum von Mises stress showed 0 degrees of abduction, suggesting that the lowered position is in a more severe condition than the elevated position. If better improvement is desired, it may be necessary to devise ways to reduce the stress on the upper screw. .展开更多
The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption...The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.展开更多
This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting tr...This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.展开更多
The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer...The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.展开更多
In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To un...In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.展开更多
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers...In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.展开更多
This paper discusses the inheritance and application of Chinese character reverse contrast typeface style.It begins by analyzing the visual features of Western reverse contrast typeface styles,with a focus on Caslon I...This paper discusses the inheritance and application of Chinese character reverse contrast typeface style.It begins by analyzing the visual features of Western reverse contrast typeface styles,with a focus on Caslon Italian and French Clarendon,providing a Western perspective reference for subsequent Chinese character reverse contrast typeface style designs.The paper then traces the origins of the Chinese reverse contrast style,from the calligraphy style"Lacquer Script"to the earliest printing type"フワンテール形",exploring the historical background and cultural significance of the Chinese reverse contrast style.In the methodology section of Chinese character reverse contrast typeface style design,the discussion is conducted from two dimensions:inheritance and application.In terms of inheritance,through an in-depth analysis of"Lacquer Script"and"フワンテール形"typeface style,the paper summarizes three basic theories for modern Chinese character reverse contrast typeface style design.In the application section,it examines in detail the two most influential recent typeface styles,"Ribaasu"and"Basic Artistic",outlining three directions of application:extreme horizontal stroke variations,exaggerated contrast,and diverse decorative strokes,showcasing new directions and possibilities for Chinese character reverse contrast typeface style design.This paper not only reviews the developmental history of the Chinese character reverse contrast typeface style but also analyzes the design methodology of Chinese character reverse contrast typeface style through specific case studies.展开更多
This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study hig...This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.展开更多
We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the r...We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector.展开更多
Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used ...Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.展开更多
A novel normally-off double channel reverse conducting(DCRC)HEMT with an integrated MOS-channel diode(MCD)is proposed and investigated by TCAD simulation.The proposed structure has two features:one is double heterojun...A novel normally-off double channel reverse conducting(DCRC)HEMT with an integrated MOS-channel diode(MCD)is proposed and investigated by TCAD simulation.The proposed structure has two features:one is double heterojunctions to form dual 2DEG channels named the 1^(st)path and the 2^(nd)path for reverse conduction,and the other is the MCD forming by the trench source metal,source dielectric,and Ga N.At the initial reverse conduction stage,the MCD acts as a switch to control the 1^(st)path which would be turned on prior to the 2^(nd)path.Because of the introduction of the 1^(st)path,the DCRC-HEMT has an additional reverse conducting channel to help enhance the reverse conduction performance.Compared with the conventional HEMT(Conv.HEMT),the DCRC-HEMT can obtain a low reverse turn-on voltage(VRT)and its VRTis independent of the gate-source bias(VGS)at the same time.The DCRC-HEMT achieves the VRTof 0.62 V,which is 59.7%and 75.9%lower than that of the Conv.HEMT at VGS=0 V and-1 V,respectively.In addition,the forward conduction capability and blocking characteristics almost remain unchanged.In the end,the key fabrication flows of DCRC-HEMT are presented.展开更多
A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling a...A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.展开更多
Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we ...Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we propose a transparent conducting oxide(TCO)and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency.The TCO can block ion migrations and chemical reactions between the metal and perovskite,while the metal greatly enhances the conductivity of the composite electrode.As a result,composite electrode-PSCs achieved a power conversion efficiency(PCE)of 23.7%(certified 23.2%)and exhibited excellent stability,maintaining 95%of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92%of the initial PCE after 1000 h continuous light soaking.This composite electrode strategy can be extended to different combinations of TCOs and metals.It opens a new avenue for improving the stability of PSCs.展开更多
Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(...Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(RTM).We can easily implement attenuation-compensated RTM using the constant Q viscoacoustic wave equation with decoupled amplitude attenuation and phase dispersion terms.However,the nonphysical amplitude-compensation process will inevitably amplify the high-frequency noise in the wavefield in an exponential form,causing the numerical simulation to become unstable.This is due to the fact that the amplitude of the compensation grows exponentially with frequency.In order to achieve stable attenuation-compensated RTM,we modify the analytic expression of the attenuation compensation extrapolation operator and make it only compensate for amplitude loss within the effective frequency band.Based on this modified analytic formula,we then derive an explicit time-space domain attenuation compensation extrapolation operator.Finally,the implementation procedure of stable attenuation-compensated RTM is presented.In addition to being simple to implement,the newly proposed attenuation-compensated extrapolation operator is superior to the conventional low-pass filter in suppressing random noise,which will further improve the imaging resolution.We use two synthetic and one land seismic datasets to verify the stability and effectiveness of the proposed attenuationcompensated RTM in improving imaging resolution in viscous media.展开更多
As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’...As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.展开更多
基金supported by the NNSF of China(12261065)the NSF of Inner Mongolia(2022MS01005)+1 种基金the Basic Science Research Fund of the Universities Directly under the Inner Mongolia Autonomous Re-gion(JY20220084)the Program for Innovative Research Team in Universities of Inner Mongolia Autonomous Region(NMGIRT2317).
文摘In this paper,we investigate the reverse order law for Drazin inverse of three bound-ed linear operators under some commutation relations.Moreover,the Drazin invertibility of sum is also obtained for two bounded linear operators and its expression is presented.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2022YFE03100000 and 2017YFE0301701)National Natural Science Foundation of China(Nos.12375226,11875255,11635008,11375188 and 11975231)the Fundamental Research Funds for the Central Universities(No.wk34200000022)。
文摘A new compact torus injector(KTX-CTI)has been built for injection experiments on the Keda Torus eXperiment(KTX)reversed field pinch(RFP).The aim is to study the fundamental physics governing the compact torus(CT)central fueling processes.In experiments conducted under the sole influence of a 0.1 T toroidal magnetic field,the injected CT successfully penetrated the entire toroidal magnetic field,reaching the inner wall of the KTX vacuum vessel.Upon reaching the inner wall,the CT diffused both radially outward and toroidally within the vessel at a discernible diffusion speed.Moreover,the inherent helicity within the CT induced a modest KTX plasma current of 200 A,consistent with predictions based on helicity conservation.CT injection demonstrated the capability to initiate KTX discharges at low loop voltages,suggesting its potential as a pre-ionization and current startup technique.During RFP discharges featuring CT injection,the central plasma density was found to exceed the Greenwald density limit,with more peaked density profiles,indicating the predominant confinement of CT plasma within the core region of the KTX bulk plasma.
基金supported by National Natural Science Foundation of China(No.12175226)。
文摘Field reversed configuration(FRC)is widely considered as an ideal target plasma for magnetoinertial fusion.However,its confinement and stability,both proportional to the radius,will deteriorate inevitably during radial compression.Hence,we propose a new fusion approach based on axial compression of a large-sized FRC.The axial compression can be made by plasma jets or plasmoids converging onto the axial ends of the FRC.The parameter space that can reach the ignition condition while preserving the FRC's overall quality is studied using a numerical model based on different FRC confinement scalings.It is found that ignition is possible for a large FRC that can be achieved with the current FRC formation techniques if compression ratio is greater than 50.A more realistic compression is to combine axial with moderate radial compression,which is also presented and calculated in this work.
基金supported in part by the National Natural Science Foundation of China(62225306,U2141235,52188102,and 62003145)the National Key Research and Development Program of China(2022ZD0119601)+1 种基金Guangdong Basic and Applied Research Foundation(2022B1515120069)the Science and Technology Project of State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.
基金supported by the National Natural Science Foundation of China under Grant No.62001199Fujian Province Nature Science Foundation under Grant No.2023J01925.
文摘In the domain of autonomous industrial manipulators,precise positioning and appropriate posture selection in path planning are pivotal for tasks involving obstacle avoidance,such as handling,heat sealing,and stacking.While Multi-Degree-of-Freedom(MDOF)manipulators offer kinematic redundancy,aiding in the derivation of optimal inverse kinematic solutions to meet position and posture requisites,their path planning entails intricate multiobjective optimization,encompassing path,posture,and joint motion optimization.Achieving satisfactory results in practical scenarios remains challenging.In response,this study introduces a novel Reverse Path Planning(RPP)methodology tailored for industrial manipulators.The approach commences by conceptualizing the manipulator’s end-effector as an agent within a reinforcement learning(RL)framework,wherein the state space,action set,and reward function are precisely defined to expedite the search for an initial collision-free path.To enhance convergence speed,the Q-learning algorithm in RL is augmented with Dyna-Q.Additionally,we formulate the cylindrical bounding box of the manipulator based on its Denavit-Hartenberg(DH)parameters and propose a swift collision detection technique.Furthermore,the motion performance of the end-effector is refined through a bidirectional search,and joint weighting coefficients are introduced to mitigate motion in high-power joints.The efficacy of the proposed RPP methodology is rigorously examined through extensive simulations conducted on a six-degree-of-freedom(6-DOF)manipulator encountering two distinct obstacle configurations and target positions.Experimental results substantiate that the RPP method adeptly orchestrates the computation of the shortest collision-free path while adhering to specific posture constraints at the target point.Moreover,itminimizes both posture angle deviations and joint motion,showcasing its prowess in enhancing the operational performance of MDOF industrial manipulators.
文摘Reverse shoulder arthroplasty (RSA) is an effective treatment for rotator cuff tears. Despite its advantages, complications occur at a high rate. Complications requiring revision include a high rate of base plate failure, 38% of which are due to instability. The primary stability the base plate ensures is a crucial factor and, thus, is the subject of much debate in clinical studies and biomechanical research. This study is aimed to provide data that will contribute to the base plate’s pri-mary stability and glenoid longevity by clarifying the stresses at the scapular fossa and base plate interface associated with elevation after RSA. A 3D finite element model was created from the DICOM data for the scapulohumeral joint and SMR shoulder system. For loading conditions, 30 N was applied for each posi-tion with abduction angles of 0, 45, 90, and 135 degrees. A three-dimensional fi-nite element analysis was performed using the static implicit method with LS-DYNA. The von Mises stresses in the scapular fossa were found not to exceed the yield stress on the bone even after elevation to an abduction angle of 135 de-grees after RSA. It is rough to uniformly compare the yield stress and the von Mises stress, but it was inferred that the possibility of fracture is low unless a large external force is applied. A maximum von Mises stress showed 0 degrees of abduction, suggesting that the lowered position is in a more severe condition than the elevated position. If better improvement is desired, it may be necessary to devise ways to reduce the stress on the upper screw. .
基金financially supported by the Outstanding Youth Scientific Research Project for Colleges and Universities of Anhui Province of China (2022AH020054)the Anhui Provincial Natural Science Foundation (2208085Y06)+2 种基金the National Natural Science Foundation of China (Nos.21975001 and U2002213)the Support Program of Excellent Young Talents in Anhui Provincial Colleges and Universities (gxyq ZD2022034)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University (2019FY003025)。
文摘The interaction between metal and support is critical in oxygen catalysis as it governs the charge transfer between these two entities,influences the electronic structures of the supported metal,affects the adsorption energies of reaction intermediates,and ultimately impacts the catalytic performance.In this study,we discovered a unique charge transfer reversal phenomenon in a metal/carbon nanohybrid system.Specifically,electrons were transferred from the metal-based species to N-doped carbon,while the carbon support reciprocally donated electrons to the metal domain upon the introduction of nickel.This led to the exceptional electrocatalytic performances of the resulting Ni-Fe/Mo_(2)C@nitrogen-doped carbon catalyst,with a half-wave potential of 0.91 V towards oxygen reduction reaction(ORR)and a low overpotential of 290 m V at 10 mA cm^(-2)towards oxygen evolution reaction(OER)under alkaline conditions.Additionally,the Fe-Ni/Mo_(2)C@carbon heterojunction catalyst demonstrated high specific capacity(794 mA h g_(Zn)~(-1))and excellent cycling stability(200 h)in a Zn-air battery.Theoretical calculations revealed that Mo_(2)C effectively inhibited charge transfer from Fe to the support,while secondary doping of Ni induced a charge transfer reversal,resulting in electron accumulation in the Fe-Ni alloy region.This local electronic structure modulation significantly reduced energy barriers in the oxygen catalysis process,enhancing the catalytic efficiency of both ORR and OER.Consequently,our findings underscore the potential of manipulating charge transfer reversal between the metal and support as a promising strategy for developing highly-active and durable bi-functional oxygen electrodes.
基金financially supported by the Scientific and Technological Developing Scheme of Jilin Province under grants no.20220402012GHthe National Natural Science Foundation of China under grants no.U21A20323+3 种基金the Capital Construction Fund within the Budget of Jilin Province no.2021C038-1the Special high-tech industrialization project of science and technology cooperation between Jilin Province and Chinese Academy of Sciences under grant no.2021SYHZ0043 and 2022SYHZ0038the Major science and technology projects of Jilin Province and Changchun City under grant no.20210301024GXthe Project for Jilin provincial department of education under grant no.JJKH20220760KJ。
文摘This work reports an exceptional reversed yield strength asymmetry at room temperature for a rare-earth free magnesium alloy containing a mass of fine dispersed quasicrystal(I-phase)precipitates.Although exhibiting traditional basal texture,it owns an exceptional CYS/TYS as high as~1.17.Electron back-scattered diffraction(EBSD)and transmission electron microscopy(TEM)examinations indicate pyramidal and prismatic dislocations plus tensile twinning being activated after immediate yielding in compression while basal and non-basal dislocations in tension.I-phase particles transferred the concentrated stress by self-twinning to provide the driving force for tensile twin initiating in neighboring grains,thereby significantly increasing the critical resolved shear stress of tensile twinning to possibly the level of pyramidal slip,finally leading to the dominance of pyramidal slip plus tensile twinning in texture grains.This results in a higher contribution on yield strength by~55 MPa in compression than in tension,which reasonably agrees with the experimental yield strength difference(~38 MPa).It can be concluded that I-phase particles influence deformation modes in tension and in compression,finally result in reversed yield strength asymmetry.
基金This study was supported by the National Natural Science Foundation of China(No.U21A20270 and 32202079)Postdoctoral Science and Technology Project of Henan,Grant No.HN2022046+2 种基金Science and Technology Project of Henan Province(232103810064)the Innovative Funds Plan of Henan University of Technology(2021ZKCJ03)the Key Scientific Research Projects of Colleges and Universities of Henan(23A550012).
文摘The liquid-liquid extraction method using reverse micelles can simultaneously extract lipid and protein of oilseeds,which have become increasingly popular in recent years.However,there are few studies on mass transfer processes and models,which are helpful to better control the extraction process of oils and proteins.In this paper,mass transfer process of peanut protein extracted by bis(2-ethylhexyl)sodium sulfosuccinate(AOT)/isooctane reverse micelles was investigated.The effects of stirring speed(0,70,140,and 210 r/min),temperature of extraction(30,35,40,45,and 50℃),peanut flour particle size(0.355,0.450,0.600,and 0.900 mm)and solidliquid ratio(0.010,0.0125,0.015,0.0175,and 0.020 g/mL)on extraction rate were examined.The results showed that extraction rate increased with temperature rising,particle size reduction as well as solid-liquid ratio increase respectively,while little effect of stirring speed(P>0.05)was observed.The apparent activation energy of extraction process was calculated as 10.02 kJ/mol and Arrhenius constant(A)was 1.91 by Arrhenius equation.There was a linear relationship between reaction rate constant and the square of the inverse of initial particle radius(1/r_(0)^(2))(P<0.05).This phenomenon and this shrinking core model were anastomosed.In brief,the extraction process was controlled by the diffusion of protein from the virgin zone interface of particle through the reacted zone and it was in line with the first order reaction.Mass transfer kinetics of peanut protein extracted by reverse micelles was established and it was verified by experimental results.The results provide an important theoretical guidance for industrial production of peanut protein separation and purification.
文摘In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.
基金supported by National Natural Science Foundation of China (Nos. 12205251, 12275236 and 12261131622)Italian Ministry for Foreign Affairs and International Cooperation Project (No. CN23GR02)+2 种基金the National Key Research and Development Program of China (Nos. 2019YFE03020003 and 2017YFE0301900)Users of Excellence program of Hefei Science Center CAS (No. 2021HSC-UE016)funded by the European Union via the Euratom Research and Training Programme (No. 101052200–EUROfusion)
文摘In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure.
文摘This paper discusses the inheritance and application of Chinese character reverse contrast typeface style.It begins by analyzing the visual features of Western reverse contrast typeface styles,with a focus on Caslon Italian and French Clarendon,providing a Western perspective reference for subsequent Chinese character reverse contrast typeface style designs.The paper then traces the origins of the Chinese reverse contrast style,from the calligraphy style"Lacquer Script"to the earliest printing type"フワンテール形",exploring the historical background and cultural significance of the Chinese reverse contrast style.In the methodology section of Chinese character reverse contrast typeface style design,the discussion is conducted from two dimensions:inheritance and application.In terms of inheritance,through an in-depth analysis of"Lacquer Script"and"フワンテール形"typeface style,the paper summarizes three basic theories for modern Chinese character reverse contrast typeface style design.In the application section,it examines in detail the two most influential recent typeface styles,"Ribaasu"and"Basic Artistic",outlining three directions of application:extreme horizontal stroke variations,exaggerated contrast,and diverse decorative strokes,showcasing new directions and possibilities for Chinese character reverse contrast typeface style design.This paper not only reviews the developmental history of the Chinese character reverse contrast typeface style but also analyzes the design methodology of Chinese character reverse contrast typeface style through specific case studies.
文摘This article examines the influence of seawater temperature and total dissolved solids (TDS) on reverse osmosis (RO) desalination in the Arabian Gulf region, with a focus on the impact of climate change. The study highlights the changes in seawater temperature and TDS levels over the years and discusses their effects on the efficiency and productivity of RO desalination plants. It emphasizes the importance of monitoring TDS levels and controlling seawater temperature to optimize water production. The article also suggests various solutions, including intensive pre-treatment, development of high-performance membranes, exploration of alternative water sources, and regulation of discharges into the Gulf, to ensure sustainable water supply in the face of rising TDS levels and seawater temperature. Further research and comprehensive monitoring are recommended to understand the implications of these findings and develop effective strategies for the management of marine resources in the Arabian Gulf.
基金the financial support from the National Natural Science Foundation of China(No.51804188)the support of the Yunnan Yuntianhua Co.,Ltd.,China,for providing the phosphate samples.
文摘We analyzed a novel cationic collector using chemical plant byproducts,such as cetyltrimethylammonium bromide(CTAB)and dibutyl phthalate(DBP).Our aim is to establish a highly effective and economical process for the removal of quartz from collophane.A microflotation test with a 25 mg·L^(−1)collector at pH value of 6-10 demonstrates a considerable difference in the floatability of pure quartz and fluorapatite.Flotation tests for a collophane sample subjected to the first reverse flotation for magnesium removal demonstrates that a rough flotation process(using a 0.4 kg·t−1 new collector at pH=6)results in a collophane concentrate with 29.33wt%P_(2)O_(5)grade and 12.66wt%SiO2 at a 79.69wt%P_(2)O_(5)recovery,providing desirable results.Mechanism studies using Fourier transform infrared spectroscopy,zeta potential,and contact angle measurements show that the adsorption capacity of the new collector for quartz is higher than that for fluorapatite.The synergistic effect of DBP increases the difference in hydrophobicity between quartz and fluorapatite.The maximum defoaming rate of the novel cationic collector reaches 142.8 mL·min−1.This is considerably higher than that of a conventional cationic collector.
基金supported by Anhui Polytechnic University Introduced Talents Research Fund(No.2021YQQ064)Anhui Polytechnic University ScientificResearch Project(No.Xjky2022168).
文摘Due to the development of digital transformation,intelligent algorithms are getting more and more attention.The whale optimization algorithm(WOA)is one of swarm intelligence optimization algorithms and is widely used to solve practical engineering optimization problems.However,with the increased dimensions,higher requirements are put forward for algorithm performance.The double population whale optimization algorithm with distributed collaboration and reverse learning ability(DCRWOA)is proposed to solve the slow convergence speed and unstable search accuracy of the WOA algorithm in optimization problems.In the DCRWOA algorithm,the novel double population search strategy is constructed.Meanwhile,the reverse learning strategy is adopted in the population search process to help individuals quickly jump out of the non-ideal search area.Numerical experi-ments are carried out using standard test functions with different dimensions(10,50,100,200).The optimization case of shield construction parameters is also used to test the practical application performance of the proposed algo-rithm.The results show that the DCRWOA algorithm has higher optimization accuracy and stability,and the convergence speed is significantly improved.Therefore,the proposed DCRWOA algorithm provides a better method for solving practical optimization problems.
基金the National Natural Science Foundations of China(Grant Nos.61874149 and U20A20208)the Outstanding Youth Science and Technology Foundation of China(Grant No.2018-JCJQ-ZQ-060)。
文摘A novel normally-off double channel reverse conducting(DCRC)HEMT with an integrated MOS-channel diode(MCD)is proposed and investigated by TCAD simulation.The proposed structure has two features:one is double heterojunctions to form dual 2DEG channels named the 1^(st)path and the 2^(nd)path for reverse conduction,and the other is the MCD forming by the trench source metal,source dielectric,and Ga N.At the initial reverse conduction stage,the MCD acts as a switch to control the 1^(st)path which would be turned on prior to the 2^(nd)path.Because of the introduction of the 1^(st)path,the DCRC-HEMT has an additional reverse conducting channel to help enhance the reverse conduction performance.Compared with the conventional HEMT(Conv.HEMT),the DCRC-HEMT can obtain a low reverse turn-on voltage(VRT)and its VRTis independent of the gate-source bias(VGS)at the same time.The DCRC-HEMT achieves the VRTof 0.62 V,which is 59.7%and 75.9%lower than that of the Conv.HEMT at VGS=0 V and-1 V,respectively.In addition,the forward conduction capability and blocking characteristics almost remain unchanged.In the end,the key fabrication flows of DCRC-HEMT are presented.
基金Project supported by the National Natural Science Foundation of China (Grants No. 61604027 and 61704016)the Chongqing Natural Science Foundation, China (Grant No. cstc2020jcyj-msxmX0550)。
文摘A power MOSFET with integrated split gate and dummy gate(SD-MOS) is proposed and demonstrated by the TCAD SENTAURUS.The split gate is surrounded by the source and shielded by the dummy gate.Consequently,the coupling area between the split gate and the drain electrode is reduced,thus the gate-to-drain charge(Q_(GD)),reverse transfer capacitance(C_(RSS)) and turn-off loss(E_(off)) are significantly decreased.Moreover,the MOS-channel diode is controlled by the dummy gate with ultra-thin gate oxide t_(ox),which can be turned on before the parasitic P-base/N-drift diode at the reverse conduction,then the majority carriers are injected to the N-drift to attenuate the minority injection.Therefore,the reverse recovery charge(Q_(RR)),time(T_(RR)) and peak current(I_(RRM)) are effectively reduced at the reverse freewheeling state.Additionally,the specific on-resistance(R_(on,sp)) and breakdown voltage(BV) are also studied to evaluate the static properties of the proposed SD-MOS.The simulation results show that the Q_(GD) of 6 nC/cm^(2),the C_(RSS) of 1.1 pF/cm^(2) at the V_(DS) of 150 V,the QRR of 1.2 μC/cm^(2) and the R_(on,sp) of 8.4 mΩ·cm^(2) are obtained,thus the figures of merit(FOM) including Q_(GD) ×R_(on,sp) of50 nC·mΩ,E_(off) × R_(on,sp) of 0.59 mJ·mΩ and the Q_(RR) × R_(on,sp) of 10.1 μC·mΩ are achieved for the proposed SD-MOS.
基金supported by National Natural Science Foundation of China(No.21872080)National Key Research and Development Program of China(2022YFB3803304)+2 种基金supported by Tsinghua University Initiative Scientific Research Program(20221080065,20223080044)The State Key Laboratory of Power System and Generation Equipment(Nos.SKLD21Z03 and SKLD20M03)the Chinese Thousand Talents Program for Young Professionals.
文摘Perovskite solar cells(PSCs)have become the represent-atives of next generation of photovoltaics;nevertheless,their stability is insufficient for large scale deployment,particularly the reverse bias stability.Here,we propose a transparent conducting oxide(TCO)and low-cost metal composite electrode to improve the stability of PSCs without sacrificing the efficiency.The TCO can block ion migrations and chemical reactions between the metal and perovskite,while the metal greatly enhances the conductivity of the composite electrode.As a result,composite electrode-PSCs achieved a power conversion efficiency(PCE)of 23.7%(certified 23.2%)and exhibited excellent stability,maintaining 95%of the initial PCE when applying a reverse bias of 4.0 V for 60 s and over 92%of the initial PCE after 1000 h continuous light soaking.This composite electrode strategy can be extended to different combinations of TCOs and metals.It opens a new avenue for improving the stability of PSCs.
基金supported by the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2021QNLM020001)the Major Scientific and Technological Projects of Shandong Energy Group(No.SNKJ2022A06-R23)the Major Scientific and Technological Projects of CNPC(No.ZD2019-183-003).
文摘Intrinsic attenuation of the earth causes energy loss and phase distortion in seismic wave propagation.To obtain high-resolution imaging results,these negative effects must be considered during reverse time migration(RTM).We can easily implement attenuation-compensated RTM using the constant Q viscoacoustic wave equation with decoupled amplitude attenuation and phase dispersion terms.However,the nonphysical amplitude-compensation process will inevitably amplify the high-frequency noise in the wavefield in an exponential form,causing the numerical simulation to become unstable.This is due to the fact that the amplitude of the compensation grows exponentially with frequency.In order to achieve stable attenuation-compensated RTM,we modify the analytic expression of the attenuation compensation extrapolation operator and make it only compensate for amplitude loss within the effective frequency band.Based on this modified analytic formula,we then derive an explicit time-space domain attenuation compensation extrapolation operator.Finally,the implementation procedure of stable attenuation-compensated RTM is presented.In addition to being simple to implement,the newly proposed attenuation-compensated extrapolation operator is superior to the conventional low-pass filter in suppressing random noise,which will further improve the imaging resolution.We use two synthetic and one land seismic datasets to verify the stability and effectiveness of the proposed attenuationcompensated RTM in improving imaging resolution in viscous media.
基金This paper is supported by the Major Science and Technology Projects of Henan Province under Grant No.221100210400.
文摘As indispensable components of superconducting circuit-based quantum computers,Josephson junctions determine how well superconducting qubits perform.Reverse Monte Carlo(RMC)can be used to recreate Josephson junction’s atomic structure based on experimental data,and the impact of the structure on junctions’properties can be investigated by combining different analysis techniques.In order to build a physical model of the atomic structure and then analyze the factors that affect its performance,this paper briefly reviews the development and evolution of the RMC algorithm.It also summarizes the modeling process and structural feature analysis of the Josephson junction in combination with different feature extraction techniques for electrical characterization devices.Additionally,the obstacles and potential directions of Josephson junction modeling,which serves as the theoretical foundation for the production of superconducting quantum devices at the atomic level,are discussed.