The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies ...The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.展开更多
The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time re...The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies(radio and microwave) associated with polarization in dielectrics.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 51576207 & 51356001)
文摘The mass entransy describes the mass-diffusion ability of the solution system, and the mass-diffusion process with the finite concentration difference always leads to the mass-entransy dissipation. This paper studies the equimolar reverse constant-temperature mass-diffusion process with Fick's law( g∝Δ(c)). The optimal concentration paths for the MED(Minimum Entransy Dissipation) are derived and compared with those for the MEG(Minimum Entropy Generation) and CCR(Constant Concentration Ratio) operations. It is indicated that the strategy of the MED is equivalent to that of the CCD(Constant Concentration Difference) of the same component; whether the MED or the MEG is selected as the optimization objective, the strategy of the CCD is much better than that of the CCR.
文摘The problem of reconstructing the spatial support of an extended radiating electric current source density in a lossy dielectric medium from transient boundary measurements of the electric fields is studied. A time reversal algorithm is proposed to localize a source density from loss-less wave-field measurements. Further, in order to recover source densities in a lossy medium, we first build attenuation operators thereby relating loss-less waves with lossy ones. Then based on asymptotic expansions of attenuation operators with respect to attenuation parameter, we propose two time reversal strategies for localization. The losses in electromagnetic wave propagation are incorporated using the Debye's complex permittivity, which is well-adopted for low frequencies(radio and microwave) associated with polarization in dielectrics.