The syntheses of three nonlinear reverse saturation absorption compounds-Indanthrone and its two derivatives are discussed. The properties of nonlinear reverse saturable absorption of the compounds were studied hy usi...The syntheses of three nonlinear reverse saturation absorption compounds-Indanthrone and its two derivatives are discussed. The properties of nonlinear reverse saturable absorption of the compounds were studied hy using the Z-scanning technique , and the influences of its conjugated structure on the absorption threshold value and the absorbable light density were discussed based on the reverse saturation absorption principle. The results shows that when the structure's conjugation property of Indanthrone and its derivatives becomes more poweoful , its absorption threshold reduees, the light lowest transmittance increases.展开更多
Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With thegradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise insequence and t...Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With thegradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise insequence and thereby modulate the nonlinear properties of materials. In current nonlinear optical traps,however, the underlying physical mechanism is mainly confined within the SA regime because thresholdvalues required to excite the RSA regime are extremely high. Herein, we demonstrate, both in theory andexperiment, nonlinear optical tweezing within the RSA regime, proving that a fascinating composite trappingstate is achievable at ultrahigh intensities through an optical force reversal induced through nonlinearabsorption. Integrated results help in perfecting the nonlinear optical trapping system, thereby providingbeneficial guidance for wider applications of nonlinear optics.展开更多
We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is ...We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.展开更多
We present the linear and nonlinear optical studies on TiO2-SiO2 nanocomposites with varying compositions. Opti- cal band gap of the material is found to vary with the amount of SiO2 in the composite. The phenomenon o...We present the linear and nonlinear optical studies on TiO2-SiO2 nanocomposites with varying compositions. Opti- cal band gap of the material is found to vary with the amount of SiO2 in the composite. The phenomenon of two-photon absorption (TPA) in TiO2/SiO2 nanocomposites has been studied using open aperture Z-scan technique. The nanocom- posites show better nonlinear optical properties than pure TiO2, which can be attributed to the surface states and weak dielectric confinement of TiO2 nanoparticles by SiO2 matrix. The nanocomposites are thermally treated and similar studies are performed. The anatase form of TiO2 in the nanocomposites shows superior properties relative to the amorphous and rutile counterpart. The involved mechanism is explained by rendering the dominant role played by the excitons in the TiO2 nanoparticles.展开更多
The nonlinear absorption properties of Er^3+ doped telluride glass were investigated with picosecond laser pulses. The optical limiting response was measured with a transmission technique and reverse saturable absorp...The nonlinear absorption properties of Er^3+ doped telluride glass were investigated with picosecond laser pulses. The optical limiting response was measured with a transmission technique and reverse saturable absorption (RSA) with a Z-scan technique, which proved that the glass was a promising material for practical optical limiters. The experimental resulted showed that the excited absorption was responsible for the measured RSA, resulting in the optical limiting response. The measured data could be well simulated with a rate equation model to obtain the absorption cross sections of the excited state.展开更多
Two iodo(phthalocyainato) indium complexes were synthesized and mixed with polymer solution(PMMA/chloroform)to prepare iodo(phthalocyainato)indium/PMMA compound film materials on a glass slice by the method of d...Two iodo(phthalocyainato) indium complexes were synthesized and mixed with polymer solution(PMMA/chloroform)to prepare iodo(phthalocyainato)indium/PMMA compound film materials on a glass slice by the method of dipping film.Two materials have typical B-band and Q-band absorption of Phthalocyanine compounds in the UV-Vis spectrum.The reverse saturable absorption experiments show that two materials have better reverse saturable absorption properties while they have higher linear transmissivity.In addition,the highest transmittance of visible light is over 70%(tetrakis(cumylphenoxy)phthalocyainate indium/OMMA compound film material).The initial threshold is 127.1mJ/cm^2.The dynamic range is 1.43.It can be concluded that introduction of the substituted groups having bigger steric hindrance and conjugative effect in the Phthalocyanine ring may increase the reverse saturable absorption effect of the Phthalocyanine indium material.展开更多
The nonlinear optical properties of an azobenzene polymer azol2-MO were investigated by a Z-scan technique. The polymer was synthesized by assembling the liquid-crystalline polymer azol2 with methyl orange. The nonlin...The nonlinear optical properties of an azobenzene polymer azol2-MO were investigated by a Z-scan technique. The polymer was synthesized by assembling the liquid-crystalline polymer azol2 with methyl orange. The nonlinear refrac- tive index (1.39×10^-15 cm2/W) and the nonlinear absorption coefficient (0.11 cm/GW) of azol2-MO were determined with 532-nm picosecond laser pulses at the irradiance of 92.40 GW/cm2. When compared to the nonlinear properties of azol2 and methyl orange, azol2-MO possesses the advantages of its two constituents and shows larger nonlinear optical properties.展开更多
TiO2 is a material which has attracted considerable attention from the scientific community for its innumerable prop- erties. TiO2 is known to exist in nature in three different crystalline structures: rutile, anatas...TiO2 is a material which has attracted considerable attention from the scientific community for its innumerable prop- erties. TiO2 is known to exist in nature in three different crystalline structures: rutile, anatase, and brookite. Anatase and rutile TiO2 films have been widely characterized for their potential applications in solar cells, self-cleaning coatings, and photocatalysis. In the present report, the third-order nonlinear susceptibilities of TiO2 and its polymorphs, anatase, and rutile, prepared by the sol-gel technique followed by heat treatment are investigated using the Z-scan technique at a wavelength of 532 nm with a duration of 7 ns. Imaginary and real values of Z(3) for amorphous, anatase, and rutile are also calculated and found to be 5 × 10^-19 m2/V2, 27 × 10^-19 m2/V2, 19 × 10^-19 m2/V2, respectively. It is found that the values of the optical constants of amorphous TiO2 after heat treatment vary considerably. It is assumed that this could be due to the variation in the electronic structure of TiO2 synchronous with the formation of its polymorphs, anatase, and rutile. Amorphous TiO2 is marked by the localization of the tail states near the band gap, whereas its crystalline counterparts are characterized by completely delocalized tail states.展开更多
In this Letter, the effects of the iron (Fe) dopant concentration on the nonlinear optical properties of iron-doped ferroelectric X-cut LiNbO3 crystals plates are studied by using the Z-scan technique with a cw lase...In this Letter, the effects of the iron (Fe) dopant concentration on the nonlinear optical properties of iron-doped ferroelectric X-cut LiNbO3 crystals plates are studied by using the Z-scan technique with a cw laser at the wave- length of 532 nm. The amount of iron in the compound is varied from 0 to 0.15 mol%. Measurements of nonlinear refractive index n2 and the nonlinear absorption coefficient β are determined. The sign of the nonlinear refractive index is found to be negative and the magnitude is on the order of 10-s cm2/W. This nonlinear effect increases as the concentration increases from 0 to 0.15 mol%. A good linear relationship is obtained between nonlinear refractive index, nonlinear absorption coefficient, and concentration.展开更多
Here,we investigated the nonlinear optical(NLO)characteristics of carboxyl-functionalized graphene oxide(GO-COOH)in the near-infrared(NIR)region.The results revealed that GO-COOH samples exhibit strong saturable absor...Here,we investigated the nonlinear optical(NLO)characteristics of carboxyl-functionalized graphene oxide(GO-COOH)in the near-infrared(NIR)region.The results revealed that GO-COOH samples exhibit strong saturable absorption at low pump levels and a gradual transition to reverse saturable absorption(RSA)with increasing pump power.Then the saturable absorber(SA)by depositing the GO-COOH on the side-polished fiber(SPF)was employed in Yb-and Er-doped fiber lasers.Stable ultrashort pulses operating in the dissipative soliton(DS)and conventional soliton(CS)regimes were obtained with pulse widths of 26.6 ps and 968 fs,respectively.Besides,the dissipative soliton resonance(DSR)phenomenon caused by the RSA of GO-COOH was also observed with increasing pump power.The high-stable DSR mode-locked pulses with the maximum pulse energy of 1.91 nJ and 0.74 nJ were obtained in YDFL and EDFL respectively.These results not only reveal the potentiality of GO-COOH in ultrafast photonics applications but also open a new avenue to explore high-pulse-energy laser sources based on twodimensional materials.展开更多
文摘The syntheses of three nonlinear reverse saturation absorption compounds-Indanthrone and its two derivatives are discussed. The properties of nonlinear reverse saturable absorption of the compounds were studied hy using the Z-scanning technique , and the influences of its conjugated structure on the absorption threshold value and the absorbable light density were discussed based on the reverse saturation absorption principle. The results shows that when the structure's conjugation property of Indanthrone and its derivatives becomes more poweoful , its absorption threshold reduees, the light lowest transmittance increases.
基金This work was supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Natural Science Foundation of China(Grant Nos.61975128,61935013,and 62175157)+3 种基金the Shenzhen Science and Technology Program(Grant Nos.JCYJ20210324120403011 and RCJC20210609103232046)the Natural Science Foundation of Guangdong Province(Grant No.2019TQ05X750)the Key Research Project of Zhejiang Lab(Grant No.2022MG0AC05)thre Shenzhen Peacock Plan(Grant No.KQTD20170330110444030)。
文摘Nonlinear responses of nanoparticles induce enlightening phenomena in optical tweezers. With thegradual increase in optical intensity, effects from saturable absorption (SA) and reverse SA (RSA) arise insequence and thereby modulate the nonlinear properties of materials. In current nonlinear optical traps,however, the underlying physical mechanism is mainly confined within the SA regime because thresholdvalues required to excite the RSA regime are extremely high. Herein, we demonstrate, both in theory andexperiment, nonlinear optical tweezing within the RSA regime, proving that a fascinating composite trappingstate is achievable at ultrahigh intensities through an optical force reversal induced through nonlinearabsorption. Integrated results help in perfecting the nonlinear optical trapping system, thereby providingbeneficial guidance for wider applications of nonlinear optics.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11974108 and 11574082)Fundamental Research Funds for the Central Universities (Grant No. 2021MS046)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019MA020)。
文摘We study the strong nonlinear optical dynamics of nanosecond pulsed Laguerre–Gaussian laser beams of high-order radial modes with zero orbital angular momentum propagating in the fullerene C60molecular medium. It is found that the spatiotemporal profile of the incident pulsed Laguerre–Gaussian laser beam is strongly reshaped during its propagation in the C60molecular medium. The centrosymmetric temporal profile of the incident pulse gradually evolves into a noncentrosymmetric meniscus shape, and the on-axis pulse duration is clearly depressed. Furthermore, the field intensity is distinctly attenuated due to the field-intensity-dependent reverse saturable absorption, and clear optical power limiting behavior is observed for different orders of the input pulsed Laguerre–Gaussian laser beams before the takeover of the saturation effect;the lower the order of the Laguerre–Gaussian beam, the lower the energy transmittance.
基金Project supported by the Department of Science&Technology of India
文摘We present the linear and nonlinear optical studies on TiO2-SiO2 nanocomposites with varying compositions. Opti- cal band gap of the material is found to vary with the amount of SiO2 in the composite. The phenomenon of two-photon absorption (TPA) in TiO2/SiO2 nanocomposites has been studied using open aperture Z-scan technique. The nanocom- posites show better nonlinear optical properties than pure TiO2, which can be attributed to the surface states and weak dielectric confinement of TiO2 nanoparticles by SiO2 matrix. The nanocomposites are thermally treated and similar studies are performed. The anatase form of TiO2 in the nanocomposites shows superior properties relative to the amorphous and rutile counterpart. The involved mechanism is explained by rendering the dominant role played by the excitons in the TiO2 nanoparticles.
基金Project supported by University of Shanghai for Science and Technology, Start-up Foundation for Doctors (X723)
文摘The nonlinear absorption properties of Er^3+ doped telluride glass were investigated with picosecond laser pulses. The optical limiting response was measured with a transmission technique and reverse saturable absorption (RSA) with a Z-scan technique, which proved that the glass was a promising material for practical optical limiters. The experimental resulted showed that the excited absorption was responsible for the measured RSA, resulting in the optical limiting response. The measured data could be well simulated with a rate equation model to obtain the absorption cross sections of the excited state.
文摘Two iodo(phthalocyainato) indium complexes were synthesized and mixed with polymer solution(PMMA/chloroform)to prepare iodo(phthalocyainato)indium/PMMA compound film materials on a glass slice by the method of dipping film.Two materials have typical B-band and Q-band absorption of Phthalocyanine compounds in the UV-Vis spectrum.The reverse saturable absorption experiments show that two materials have better reverse saturable absorption properties while they have higher linear transmissivity.In addition,the highest transmittance of visible light is over 70%(tetrakis(cumylphenoxy)phthalocyainate indium/OMMA compound film material).The initial threshold is 127.1mJ/cm^2.The dynamic range is 1.43.It can be concluded that introduction of the substituted groups having bigger steric hindrance and conjugative effect in the Phthalocyanine ring may increase the reverse saturable absorption effect of the Phthalocyanine indium material.
基金Project supported by the National Natural Science Foundation of China (Grant No.11174203)
文摘The nonlinear optical properties of an azobenzene polymer azol2-MO were investigated by a Z-scan technique. The polymer was synthesized by assembling the liquid-crystalline polymer azol2 with methyl orange. The nonlinear refrac- tive index (1.39×10^-15 cm2/W) and the nonlinear absorption coefficient (0.11 cm/GW) of azol2-MO were determined with 532-nm picosecond laser pulses at the irradiance of 92.40 GW/cm2. When compared to the nonlinear properties of azol2 and methyl orange, azol2-MO possesses the advantages of its two constituents and shows larger nonlinear optical properties.
基金Project supported by the Funds from the Department of Science and Technology(DST),India
文摘TiO2 is a material which has attracted considerable attention from the scientific community for its innumerable prop- erties. TiO2 is known to exist in nature in three different crystalline structures: rutile, anatase, and brookite. Anatase and rutile TiO2 films have been widely characterized for their potential applications in solar cells, self-cleaning coatings, and photocatalysis. In the present report, the third-order nonlinear susceptibilities of TiO2 and its polymorphs, anatase, and rutile, prepared by the sol-gel technique followed by heat treatment are investigated using the Z-scan technique at a wavelength of 532 nm with a duration of 7 ns. Imaginary and real values of Z(3) for amorphous, anatase, and rutile are also calculated and found to be 5 × 10^-19 m2/V2, 27 × 10^-19 m2/V2, 19 × 10^-19 m2/V2, respectively. It is found that the values of the optical constants of amorphous TiO2 after heat treatment vary considerably. It is assumed that this could be due to the variation in the electronic structure of TiO2 synchronous with the formation of its polymorphs, anatase, and rutile. Amorphous TiO2 is marked by the localization of the tail states near the band gap, whereas its crystalline counterparts are characterized by completely delocalized tail states.
文摘In this Letter, the effects of the iron (Fe) dopant concentration on the nonlinear optical properties of iron-doped ferroelectric X-cut LiNbO3 crystals plates are studied by using the Z-scan technique with a cw laser at the wave- length of 532 nm. The amount of iron in the compound is varied from 0 to 0.15 mol%. Measurements of nonlinear refractive index n2 and the nonlinear absorption coefficient β are determined. The sign of the nonlinear refractive index is found to be negative and the magnitude is on the order of 10-s cm2/W. This nonlinear effect increases as the concentration increases from 0 to 0.15 mol%. A good linear relationship is obtained between nonlinear refractive index, nonlinear absorption coefficient, and concentration.
基金the National Natural Science Foundation of China(12174223,12274263,12004213,21872084,52072351,62175128)the Natural Science Foundation of Shandong Province(ZR2022QF063)+2 种基金the China Postdoctoral Science Foundation(2022M711936)the Postdoctoral Innovation Project of Shandong Province(Grant No.SDCX-ZG-202201006)the Qingdao Postdoctoral Application Research Funded Project.H.Chu and Z.Pan thank Shandong University for financial support.
文摘Here,we investigated the nonlinear optical(NLO)characteristics of carboxyl-functionalized graphene oxide(GO-COOH)in the near-infrared(NIR)region.The results revealed that GO-COOH samples exhibit strong saturable absorption at low pump levels and a gradual transition to reverse saturable absorption(RSA)with increasing pump power.Then the saturable absorber(SA)by depositing the GO-COOH on the side-polished fiber(SPF)was employed in Yb-and Er-doped fiber lasers.Stable ultrashort pulses operating in the dissipative soliton(DS)and conventional soliton(CS)regimes were obtained with pulse widths of 26.6 ps and 968 fs,respectively.Besides,the dissipative soliton resonance(DSR)phenomenon caused by the RSA of GO-COOH was also observed with increasing pump power.The high-stable DSR mode-locked pulses with the maximum pulse energy of 1.91 nJ and 0.74 nJ were obtained in YDFL and EDFL respectively.These results not only reveal the potentiality of GO-COOH in ultrafast photonics applications but also open a new avenue to explore high-pulse-energy laser sources based on twodimensional materials.