We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two el...We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11274208
文摘We study the coutrol of gate voltage over the magnetization of a single-molecule magnet (SMM) weakly coupled to a ferromagnetic and a normal metal electrode in the presence of the temperature gradient between two electrodes. It is demonstrated that the SMM's magnetization can change periodically with periodic gate voltage due to the driving oI the temperature gradient. Under an appropriate matching of the electrode polarization, the temperature difference and the pulse width of gate voltage, the SMM's magnetization can be completely reversed in a period of gate voltage. The corresponding flipping time can be controlled by the system parameters. In addition, we also investigate the tunneling anisotropic magnetoresistance (TAMFt) of the device in the steady state when the ferromagnetic electrode is noncollinear with the easy axis of the SMM, and show the jump characteristic of the TAMR.