The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with co...The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.展开更多
In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method o...In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method of designing a RSD-based pulse circuit without a magnetic switch is proposed.In the pulse circuit,a RBDT(reverse blocking diode thyristor)is used to separate the two capacitors and provide an energy branch.The pre-charge time of the RSD can be guaranteed by the energy conversion between the capacitors and inductors,instead of the saturation of the magnetic switch.In addition,the energy which is reused to trigger the RSD is based on an inductor.The pulse circuit is evaluated by simulations and practical experiments.According to the experimental results,the factors affecting the load pulse current and triggering of the RSD and RBDT are studied.Meanwhile,a method to reduce the current in the trigger switch,which is a potential problem in the pulse circuit,is proposed.展开更多
The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift ...The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.展开更多
脉冲功率技术能够在较小的空间内对目标物进行瞬时高能放电,在一些特殊场所下可以替代传统的火药完成对岩石的爆破。脉冲功率技术的核心是脉冲功率开关器件,反向开关负阻晶体管(RSD)是一种新型的脉冲功率开关器件,具有通流能力强、开关...脉冲功率技术能够在较小的空间内对目标物进行瞬时高能放电,在一些特殊场所下可以替代传统的火药完成对岩石的爆破。脉冲功率技术的核心是脉冲功率开关器件,反向开关负阻晶体管(RSD)是一种新型的脉冲功率开关器件,具有通流能力强、开关速度快、工作寿命长等特点。介绍了一种基于RSD的百兆瓦级脉冲功率组件的设计过程及其在岩石爆破中的应用,验证了脉冲功率技术替代传统火药的可能性。该脉冲功率组件外形尺寸为1 m×0.8 m×1.8 m,测试结果表明其输出脉冲电压不小于5 k V,脉冲电流不小于50 k A,脉冲能量不小于100 k J,峰值功率不小于200 MW,采用1 m3的混凝土构件模拟爆破对象,获得了较好的爆破效果。展开更多
The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing t...The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.50577028the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20050487044the China Postdoctoral Science Foundation under Grant No.20080440931
文摘The skin effect in the reversely switched dynistor (RSD) devices is investigated in this paper. Based on the plasma bipolar drift model of the RSD, the current density distributions on the chip are simulated with considering the skin effect. The results indicate that the current density on the border can be several hundred to a thousand A/cm2 higher than that in the center of the chip. The skin effect becomes more prominent as the voltage increases and the inductance decreases in the main circuit. The phenomenon that most of a certain group of chips break over on the border has proved the existence of the skin effect.
基金This work was supported by the National Natural Science Foundation of China(51877092,51377069).
文摘In the reversely switched dynistor(RSD)-based pulse power circuits,a magnetic switch is usually necessary to be applied together with a main switch.It occupies space and needs a magnetic reset.In this paper,a method of designing a RSD-based pulse circuit without a magnetic switch is proposed.In the pulse circuit,a RBDT(reverse blocking diode thyristor)is used to separate the two capacitors and provide an energy branch.The pre-charge time of the RSD can be guaranteed by the energy conversion between the capacitors and inductors,instead of the saturation of the magnetic switch.In addition,the energy which is reused to trigger the RSD is based on an inductor.The pulse circuit is evaluated by simulations and practical experiments.According to the experimental results,the factors affecting the load pulse current and triggering of the RSD and RBDT are studied.Meanwhile,a method to reduce the current in the trigger switch,which is a potential problem in the pulse circuit,is proposed.
基金supported by the National Natural Science Foundation of China (Grant Nos 50277016 and 50577028)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20050487044)
文摘The power dissipation characteristics of pulsed power switch reversely switched dynistors (RSDs) are investigated in this paper. According to the expressions of voltage on RSD, derived from the plasma bipolar drift model and the RLC circuit equations of RSD main loop, the simulation waveforms of current and voltage on RSD are acquired through iterative calculation by using the fourth order Runge-Kutta method, then the curve of transient power on RSD versus time is obtained. The result shows that the total dissipation on RSD is trivial compared with the pulse discharge energy and the commutation dissipation can be nearly ignored compared with the quasi-static dissipation. These characteristics can make the repetitive frequency of RSD increase largely. The experimental results prove the validity of simulation calculations. The influence factors on power dissipation are discussed. The power dissipation increases with the increase of the peak current and the n-base width and with the decrease of n-base doping concentration. In order to keep a low power dissipation, it is suggested that the n-base width should be smaller than 320μm when doping concentration is 1.0×10^14cm^-3 while the doping concentration should be higher than 5.8×10^13cm^-3 when n-base width is 270μm.
文摘脉冲功率技术能够在较小的空间内对目标物进行瞬时高能放电,在一些特殊场所下可以替代传统的火药完成对岩石的爆破。脉冲功率技术的核心是脉冲功率开关器件,反向开关负阻晶体管(RSD)是一种新型的脉冲功率开关器件,具有通流能力强、开关速度快、工作寿命长等特点。介绍了一种基于RSD的百兆瓦级脉冲功率组件的设计过程及其在岩石爆破中的应用,验证了脉冲功率技术替代传统火药的可能性。该脉冲功率组件外形尺寸为1 m×0.8 m×1.8 m,测试结果表明其输出脉冲电压不小于5 k V,脉冲电流不小于50 k A,脉冲能量不小于100 k J,峰值功率不小于200 MW,采用1 m3的混凝土构件模拟爆破对象,获得了较好的爆破效果。
基金National Natural Science Foundation of China(No.50277016 and 50577028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20050487044)
文摘The thin emitter structure was introduced into reversely switched dynistor(RSD) to improve its turn-on characteristics. According to the analysis of turn-on condition, thin emitter structure is capable of reducing the extraction action for the triggering plasma layer P1 during turn-on process, and satisfying the requirement that triggering electric charge cannot be exhausted and therefore enables RSD to turn on uniformly. The on-state thin emitter RSD was equivalent to an asymmetric pin diode model. The simulation result shows that the forward voltage drop of RSD falls with the decrease of doping dose in p^+-emitter in a certain range, and when the doping concentration is extremely tow, the decrease of the width of p^+-emitter can obtain a tow forward voltage drop. Thin emitter RSD chips were made by sintering AI on n-Si. The test result shows that their turn-on process is uniform and the voltage drop is 7.5 V when the peak conversion current is 5 500 A.