We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo...We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.展开更多
This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and...This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.展开更多
Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] ...Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] denotes by A<sup>#</sup> the group inverse of A∈K<sup>n×n</sup> which is the solu-tion of the euqations:AXA=A, XAX=X, AX=AX.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012 and 41561144006
文摘We present a passive geoacoustic inversion method using two hydrophones, which combines noise interferometry and time reversal mirror (TRM) techniques. Numerical simulations are firstly performed, in which strong fo- cusing occurs in the vicinity of one hydrophone when Green's function (GF) is back-propagated from the other hydrophone, with the position and strength of the focus being sensitive to sound speed and density in the bottom. We next extract the GF from the noise cross-correlation function measured by two hydrophones with 8025-m distance in the Shallow Water '06 experiment. After realizing the TRM process, sound speed and density in the bottom are inverted by optimizing focusing of the back-propagated GF. The passive inversion method is inherently environmentally friendly and low-cost.
基金Supported by the National Natural Science Foundation of China(50978083)the Fundamental Research Funds for the Central Universities(2010B02814)
文摘This paper proposes a sensitivity analysis method for engineering parameters using interval analyses.This method substantially extends the application of interval analysis method.In this scheme,parameter intervals and decision-making target intervals are determined using the interval analysis method.As an example,an inverse analysis method for uncertainty is presented.The intervals of unknown parameters can be obtained by sampling measured data.Even for limited measured data,robust results can also be obtained with the inverse analysis method,which can be intuitively evaluated by the uncertainty expressed in terms of an interval.For complex nonlinear problems,an iteratively optimized inverse analysis model is proposed.In a given set of loose parameter intervals,all the unknown parameter intervals that satisfy the measured information can be obtained by an iteratively optimized inverse analysis model.The influences of measured precisions and the number of parameters on the results of the inverse analysis are evaluated.Finally,the uniqueness of the interval inverse analysis method is discussed.
基金This work is Supported by NSF of Heilongjiang Provice
文摘Let K<sup>n×n</sup> be the set of all n×n matrices and K<sub>r</sub><sup>n×n</sup> the set {A∈K<sup>n×n</sup>|rankA=r} on askew field K. Zhuang [1] denotes by A<sup>#</sup> the group inverse of A∈K<sup>n×n</sup> which is the solu-tion of the euqations:AXA=A, XAX=X, AX=AX.