CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The...CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The magnetic field is described to a spatial resolution of 150 km at the mean Earth’s radius,which represents a good compromise between the resolutions afforded by surface and satellite data.We compare the magnetic anomalies modeled at the regional scale with composite regions containing large-scale of tectonic structures.These regions,including the Tarim Basin and the Tibetan Plateau,are correlated with regional magnetic anomalies at satellite altitude but contain a significant number of small-scale and complex magnetic structures at the mean Earth’s radius.These magnetic anomalies are globally consistent with the known geological features in China but also offer a way to delineate the contours of the geological blocks and to discuss the connection between magnetic anomalies and the heat flow distribution in this region.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.4117412240890163&41031066)OPWSRP(Grant No.201005017)
文摘CHAMP satellite data and ground-based magnetic observations are used and combined to map the lithospheric magnetic field over China by means of the revised spherical cap harmonic analysis(R-SHCA)modeling technique.The magnetic field is described to a spatial resolution of 150 km at the mean Earth’s radius,which represents a good compromise between the resolutions afforded by surface and satellite data.We compare the magnetic anomalies modeled at the regional scale with composite regions containing large-scale of tectonic structures.These regions,including the Tarim Basin and the Tibetan Plateau,are correlated with regional magnetic anomalies at satellite altitude but contain a significant number of small-scale and complex magnetic structures at the mean Earth’s radius.These magnetic anomalies are globally consistent with the known geological features in China but also offer a way to delineate the contours of the geological blocks and to discuss the connection between magnetic anomalies and the heat flow distribution in this region.