期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Flow Dynamics of a Spiral-groove Dry-gas Seal 被引量:20
1
作者 WANG Bing ZHANG Huiqiang CAO Hongjun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期78-84,共7页
The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the... The dry-gas seal has been widely used in different industries. With increased spin speed of the rotator shaft, turbulence occurs in the gas film between the stator and rotor seal faces. For the micro-scale flow in the gas film and grooves, turbulence can change the pressure distribution of the gas film. Hence, the seal performance is influenced. However, turbulence effects and methods for their evaluation are not considered in the existing industrial designs of dry-gas seal. The present paper numerically obtains the turbulent flow fields of a spiral-groove dry-gas seal to analyze turbulence effects on seal performance. The direct numerical simulation (DNS) and Reynolds-averaged Navier-Stokes (RANS) methods are utilized to predict the velocity field properties in the grooves and gas film. The key performance parameter, open force, is obtained by integrating the pressure distribution, and the obtained result is in good agreement with the experimental data of other researchers. Very large velocity gradients are found in the sealing gas film because of the geometrical effects of the grooves. Considering turbulence effects, the calculation results show that both the gas film pressure and open force decrease. The RANS method underestimates the performance, compared with the DNS. The solution of the conventional Reynolds lubrication equation without turbulence effects suffers from significant calculation errors and a small application scope. The present study helps elucidate the physical mechanism of the hydrodynamic effects of grooves for improving and optimizing the industrial design or seal face pattern of a dry-gas seal. 展开更多
关键词 flow dynamics spiral-groove dry-gas seal turbulence effects direct numerical simulation (DNS) reynolds-averaged Navier-Stokes (rans method Reynolds lubrication equation
下载PDF
AERODYNAMIC OPTIMIZATION FOR TURBINE BLADE BASED ON HIERARCHICAL FAIR COMPETITION GENETIC ALGORITHMS WITH DYNAMIC NICHE 被引量:5
2
作者 SHU Xinwei GU Chuangang WANG Tong YANG Bo 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期38-42,共5页
A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is prese... A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade. 展开更多
关键词 Turbine blade reynolds-averaged Navier-stokes(rans equation Lift-drag ratio Optimum design
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部