The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80...The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.展开更多
Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not on...Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.展开更多
Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Current...Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.展开更多
基金Financial Support of Oklahorna Wheat Foundation, Oklahome Wheat Commission and Oklahoma Experiment Station of Oklahoma State University.
文摘The effect of reduced glutathione (GSH) on fresh and pre-proofed frozen dough rheological properties were investigated using dynamic stress rheometry and small scale extensibility with the addition of three levels (80×10-6, 160× 10-6 and 240×10-6 GSH) and six storage times (0 and 1 day, 2, 4, 6 and 8 weeks). Three relaxation times (1, 13 and 26min) after loading the dough in the rheometer were used to determine storage (G’) and loss (G”) moduli. Correlations for G’ (r=0.678 and 0.622 at 0.05, and 10Hz, respectively) and G” (r=0.699, and 0.690 at 0.05, and 10Hz, respectively) were observed with the area under the extension curve at 26 min relaxation time. The addition of GSH to fresh dough reduced G’ (16.4% to 55.9%) and G” (13.7% to 52.2%). Freezing and frozen storage caused increase in G’ and G”. The addition of GSH reduced dough strength indicated by the reduction in maximum resistance to extension (Rmax) and the ratio of maximum resistance to extensibility (Rmax/E). The reduction in Rmax across all relaxation times ranged from 16.2% to 59.4%. An increase in dough extension (E) was observed with 240×10-6 GSH at all frozen storage and rest period times. Addition of GSH caused an increase of liquid phase (30.6% to 35.3%) in fresh dough and frozen dough (10.3% to 20.7%) after one day frozen storage. Negative correlations of water content in the solid phase with dough extensibility and area under the extensibility curve were found (r=-0.594 and-0.563, respectively, p<0.001). This suggests a loss of dough extensibility and strength as the water holding capacity of the dough components changes during frozen storage.
基金Projects(51409154,41772299)supported by the National Natural Science Foundation of ChinaProject(J16LG03)supported by the Shandong Province Higher Educational Science and Technology Program,China+1 种基金Projects(2015JQJH106,2014TDJH103)supported by the SDUST Research Fund,ChinaProject(201630576)supported by the Tai’an Scientific and Technologic Development Project,China
文摘Soft rock surrounding deep roadway has poor stability and long-term rheological effect. More and larger deformation problems of surrounding rock occur due to adverse supporting measures for such roadways, which not only affects the engineering safety critically but also improves the maintenance costs. This paper takes the main rail roadway with severely deformation in China's Zaoquan coal mine as an example to study the long-term deformation tendency and damage zone by means of in-situ deformation monitoring and acoustic wave testing technique. A three-dimensional finite element model reflecting the engineering geological condition and initial design scheme is established by ABAQUS. Then, on the basis of field monitoring deformation data, the surrounding rock geotechnical and theological parameters of the roadway are obtained by back analysis. A combined supporting technology with U-shaped steel support and anchor-grouting is proposed for the surrounding soft rock. The numerical simulation of the combined supporting technology and in-situ deformation monitoring results show that the soft rock surrounding the roadway has been held effectively.
基金The Specialized Research Fund for the Doctoral Program of Higher Education under contract No.20120041130002the National Key Project of Science and Technology under contract No.2011ZX 05056-001-02the Fundamental Research Funds for the Central Universities under contract No.DUT14ZD220
文摘Submarine landslides can cause severe damage to marine engineering structures. Their sliding velocity and runout distance are two major parameters for quantifying and analyzing the risk of submarine landslides.Currently, commercial calculation programs such as BING have limitations in simulating underwater soil movements. All of these processes can be consistently simulated through a smoothed particle hydrodynamics(SPH) depth integrated model. The basis of the model is a control equation that was developed to take into account the effects of soil consolidation and erosion. In this work, the frictional rheological mode has been used to perform a simulation study of submarine landslides. Time-history curves of the sliding body's velocity, height,and length under various conditions of water depth, slope gradient, contact friction coefficient, and erosion rate are compared; the maximum sliding distance and velocity are calculated; and patterns of variation are discussed.The findings of this study can provide a reference for disaster warnings and pipeline route selection.