The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic str...The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.展开更多
Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasti...Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasting disturbance for a long time.According to the test from the site,an experimental study was made in Theological and dynamic disturbance.After that,on the basis of variable rock mechanics parameters from the experimental data,numerical simulation was used to analyze the vertical stress distribution of goaf,vertical displacement and plastic area of roof in the "deterioration" caused by Theological and blasting,which shows that the mechanics properties of the rock were greatly influenced by Theological,and dynamic disturbance.The results of the experimental study and numerical simulation show that the mechanics properties of rock are greatly influenced by Theological and dynamic disturbance.As a result,the stability of goaf is greatly reduced.Finally,by comparing golf monitoring results with the analysis of theoretical calculation,it was found that the results were approximately the same,which testifies the reliability of the method.This method provides a new way of studying the stability of goaf as well as laying a basic foundation for future safety management.展开更多
基金Project(2007CB209400) supported by the Major State Basic Research and Development Program of ChinaProject(50774093) supported by the National Natural Science Foundation of ChinaProject(200801) supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines
文摘The viscoelastic-plastic creep experiments on soft ore-rock in Jinchuan Mine III were performed under circular increment step load and unload. The experimental data were analyzed according to instantaneous elastic strain, visco-elastic strain, instantaneous plastic strain and visco-plastic strain. The result shows that instantaneous deformation modulus tends to increase with the increase of creep stress; soft rocks enhance the ability to resist instantaneous elastic deformation and instantaneous plastic deformation during the multi-level of load and unload in the cyclic process. In respect of specimen JC1099, the ratio of visco-elastic strain to visco-plastic strain varies from 3.15 to 6.58, and the ratio has decreasing tendency with stress increase as a whole; creep deformation tends to be a steady state at low stress level; soft rocks creep usually embodies accelerated creep properties at high stress level. With the damaging variable and the hardening function introduced, a nonlinear creep model of soft rocks is established, in which the decay creep is described by the nonlinear hardening function H of viscidity coefficient. The model can describe the accelerated creep of soft rocks since the nonlinear damaging evolvement variable D of deformation parameter of rocks is introduced. Three stages of soft rocks creep can be described with the uniform creep equation in the nonlinear creep model. With this nonlinear creep model applied to the creep experiments of the ore-rock of Jinchuan Mine III, the nonlinear creep model's curves are in good agreement with experimental data.
文摘Based on the classical static theory and static numerical simulation,the static method could not accurately reflect the stability of goaf where the rocks on the pillar and roof are influenced by Theological and blasting disturbance for a long time.According to the test from the site,an experimental study was made in Theological and dynamic disturbance.After that,on the basis of variable rock mechanics parameters from the experimental data,numerical simulation was used to analyze the vertical stress distribution of goaf,vertical displacement and plastic area of roof in the "deterioration" caused by Theological and blasting,which shows that the mechanics properties of the rock were greatly influenced by Theological,and dynamic disturbance.The results of the experimental study and numerical simulation show that the mechanics properties of rock are greatly influenced by Theological and dynamic disturbance.As a result,the stability of goaf is greatly reduced.Finally,by comparing golf monitoring results with the analysis of theoretical calculation,it was found that the results were approximately the same,which testifies the reliability of the method.This method provides a new way of studying the stability of goaf as well as laying a basic foundation for future safety management.