Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation...Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation of these elements in trees and rhizosphere soils.Here we analyzed the C,N,P content and stoichiometry in leaves,fine roots and rhizosphere soils of trees on the upper and lower slopes of a 12-year-old teak plantation.The Kraft classification system of tree status was used to sample dominant,subdominant and mean trees at each slope position.The results showed that the C,N and P contents in leaves were higher than in fine roots and rhizosphere soils.The lowest C/N,C/P and N/P ratios were found in rhizosphere soils,and the C/N and C/P ratios in fine roots were higher than in leaves.Nutrient accumulation in leaves,fine roots and rhizosphere soils were significantly influenced by slope position and tree class with their interaction mainly showing a greater effect on rhizosphere soils.Leaf C content and C/N ratio,fine root C and P contents,and C/N and C/P ratios all increased distinctly with declining slope position.The contents of organic matter(SOM),ammonium(NH4+-N),nitrate-nitrogen(NO3--N)and available potassium(AK)in rhizosphere soils were mainly enriched on upper slopes,but exchange calcium(ECa),available phosphorus(AP),and pH were relatively lower.Variations in the C,N and P stoichiometries in trees were mainly attributed to the differences in rhizosphere soil properties.N and P contents showed significant positive linear relationships between leaf and rhizosphere soil,and C content negative linear correlation among leaves,fine roots and rhizosphere soils.Chemical properties of rhizosphere soils,particularly C/N and NH4+-N,had significant effects on the leaf nutrients in trees on the upper slope.Correspondingly,rhizosphere soil properties mainly influenced fine root nutrients on the lower slope,and soil AK was the major influencing factor.Overall,these results offer new insights for the sustainability and management of teak plantations in hilly areas.展开更多
The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing c...The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing conditions on fertile soils (ASG, TSC and SP) the total amount of biomass produced by young birch stands divides into fractions as follows: stem wood 51.8%-59.5%; branch wood 9.8%-12.4%; foliage 5.7%-6.8%; stump wood and roots 25%-30%. In forest types on lean soils (TP) the same indices are 32.3%-41.8%, 18.2%-24.2%, 13.2%-16.1% and 26.8%-27.4%, respectively. The stand performance closely correlates with the basic nutrient (P, N, K, C and Mg) availability in forest soils. In lean typicpodzol soils (TP) the content of mineral nutrients is no higher than 20%-48% of that in more fertile soils (ASG, TSC and SP). In young birch stands the take-up of mineral nutrients from 0-40 cm soil layer for developing the above-ground biomass makes a fairly small proportion of the total: up to 4.8%-6.2% for P; 4.9%-12.2% for N; 1.1%-4.1% for K; 11.6% for Ca; 0.8%-7.7% for Mg; in leaner soils the same indices are P 0.1%-0.4%, N 1%-1.5%, K 0.2%-0.6%, Ca 0.1%-0.9%, Mg 0.1%-0.8%, respectively. The analyses of pest damages in young birch stands confirm a hypothesis that the degree of pest damage depends on the stand vitality as described by the site index.展开更多
The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous...The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.展开更多
[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetat...[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.展开更多
Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic t...Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.展开更多
Knowledge of potential anaerobic soil N mineralization is important for nitrogen fertilizer application. Instead of time-consuming laboratory incubation, we attempt to use pedo-transfer functions (PTFs) approach to ge...Knowledge of potential anaerobic soil N mineralization is important for nitrogen fertilizer application. Instead of time-consuming laboratory incubation, we attempt to use pedo-transfer functions (PTFs) approach to get this information. 27 soil samples with various soil depths were collected from paddy field, woodland and tea field in subtropical central China, anaerobically incubated at 35°C for 7 weeks to determine N mineralization, which was fitted by a modified double exponential model with two parameters (the fraction of active N pool (f) and mineralization rate constant (k) for active N pool). The PTFs for parameters were developed from significant soil properties using multiple stepwise regression method. Parameter f (range: 1.59% - 10.4%, mean: 5.2%) was mainly correlated with soil total N (TN), organic C (SOC), sand and silt particle contents (r = -0.59 - 0.69, p k (range: 0.027 - 0.155 d-1, mean: 0.97 d-1) was significantly related to TN, SOC, clay content, C to N ratio and pH (r = -0.6 - 0.71, p f (R2 = 0.72, p TN and pH) for parameter k (R2 = 0.61, p < 0.01). The developed PTFs, integrating various land uses and soil depths, suggest that basic soil properties are helpful for estimation of anaerobic soil N mineralization.展开更多
Background:Black locust(BL,Robinia pseudoacacia)is considered a promising tree species for reforestation due to its great ability to fix nitrogen.However,after two or three coppice-harvesting rotations,the productivit...Background:Black locust(BL,Robinia pseudoacacia)is considered a promising tree species for reforestation due to its great ability to fix nitrogen.However,after two or three coppice-harvesting rotations,the productivity of BL declines.Whether soil microbial communities are affected and how these groups correlate with the nitrogen mineralization process across multi-generation stands remains unclear.Methods:We investigated the composition and structure of free-living nitrogen-fixing microorganisms(diazotrophs)by sequencing the marker gene nifH and compared these results to levels of soil nitrogen mineralization in the bulk soil and rhizosphere in black locust plantations on Mount Tai,China.Results:The results showed multi-generation BL coppice plantations decreased the total soil nitrogen(N),soil phosphorus(P),soil microbial biomass N(MBN),soil microbial biomass C(MBC),soil nitrification rate(Rn),soil ammonification rate(Ra),and net soil N mineralization rate(Rm),but significantly increased the concentration of soil NH_(4þ)-N to maintain sufficient NO_(3)^(-)N.The dominant species in bulk soil and rhizosphere changed from Rhodopseudomonas(22.62%and 15.76%),unclassified_c_Alphaproteobacteria(22.37%and 29.28%),unclassified_o_Rhizobiales(15.40%and 13.31%),Bradyrhizobium(12.00%and 11.74%)in seedling plantations to Bradyrhizobium(45.95%and 47.86%)and Rhodopseudomonas(43.56%and 41.84%)in coppice plantations,respectively.Mantel test and Redundancy analysis(RDA)revealed that Rn,Ra,and Rm were the most important factors shaping the diazotrophic communities.Conclusions:Our results suggest that the multi-generation BL coppice plantation can homogenize soil diazotrophic communities,which is mainly regulated by the available N loss caused by nitrogen mineralization.Strengthening the management technology of coppice plantations will provide more beneficial external consumption.展开更多
Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutri...Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutrients.The aim of this study was to determine the effect of burning accumulated forest residues(slash)on soil chemical properties and how trees respond.We analyzed 40 burned and unburned sites and compared growth of Eucalyptus grandis W.Hill ex Maiden between sites.Soil pH increased by 39%after fire,suggesting reduced soil acidity and increased liming.Total nitrogen increased by 100%;other nutrients(Ca^2+,Mg^2+and K^+)also increased.Increase in nutrients had a significant effect on the growth of E.grandis;larger and taller trees were associated more with burned than unburned sites.This study provides evidence that burning accumulated slash during land preparation prior to plantation establishment alters soil nutrient status and enhances the growth of E.grandis.展开更多
Collective efforts to fight mineral nutrient malnutrition in humans require consideration of soil fertility management practices (SFMP) in vegetable production. This study aimed at establishing the relationship betwee...Collective efforts to fight mineral nutrient malnutrition in humans require consideration of soil fertility management practices (SFMP) in vegetable production. This study aimed at establishing the relationship between SFMP and vegetable nutrient concentration for human health in farming systems of Tanzania. Soil and vegetable samples collected from vegetable growing areas in Kilombero and Dodoma were analyzed for chemical properties and mineral nutrient concentration. Descriptive statistics, analysis of variance and correlation analysis were employed. The results showed that soil pH in Kilombero ranged from 6.04 to 6.8 and in Dodoma ranged from 6.23 to 8.58. The organic C was low, ranged from 0.10% to 1.87%. All soils studied had sufficient Zn (0.45 to 29.3 mg/kg), Cu (0.71 to 3.23 mg/kg), Fe (3.70 to 171.7 mg/kg) and Mn (2.84 to 41.38 mg/kg). Zinc concentration in all vegetables ranged from 12.57 to 134.54 mg/kg, 14% of vegetables had low Zn (<20 mg/kg) for human health. The Cu concentration in vegetables ranged from 0.07 to 52.37 mg/kg, and vegetables from Kilombero had very low Cu (<0.10 mg/kg) for plant and human nutrition. Vegetable Fe and Mn concentration ranged from 152.95 to 1780 mg/kg and 35.10 to 321.82 mg/kg, respectively. The SFMP used did not affect mineral micronutrients concentration in vegetables, but affected soil Zn, Cu, Fe and Mn concentrations. Soil pH, Zn, and CEC correlated with vegetable Cu, K, Mg, Zn, P and Fe concentrations, and differed among soils. Therefore, soil properties differed with SFMP, and both determined mineral concentrations in vegetables for human health.展开更多
A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larc...A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.展开更多
[目的]大气氮沉降对森林根际与非根际土壤养分有重要影响。华北地区是我国氮沉降高值区之一,然而目前关于氮沉降对该地区森林土壤养分影响的阈值及其是否引起其它养分限制还不清楚。[方法]本研究以河北省木兰林场国有林场的华北落叶松...[目的]大气氮沉降对森林根际与非根际土壤养分有重要影响。华北地区是我国氮沉降高值区之一,然而目前关于氮沉降对该地区森林土壤养分影响的阈值及其是否引起其它养分限制还不清楚。[方法]本研究以河北省木兰林场国有林场的华北落叶松人工林为研究对象,通过多水平氮添加实验(0、5、10、20、40、80、160 kg N·ha^(-1)·yr^(-1)),分析氮添加对根际和非根际土壤在全量养分、速效养分及其生态化学计量的差异影响,旨在揭示氮添加对华北落叶松人工林根际效应的影响。[结果]研究表明:1)根际土壤有机碳(SOC)、总氮(TN)、硝态氮(NO_(3)^(-)-N)和有效氮(AN)含量随氮添加水平呈上升趋势,且都在氮添加为80 kg N·ha^(-1)·yr^(-1)时达到最高值,与对照组相比增加了39.55%、36.27%、56.69%、44.02%。2)非根际土壤NO_(3)^(-)-N在氮添加为160 kg N·ha^(-1)·yr^(-1)时达到最大,与对照组存在显著性差异,不同氮添加水平下SOC、TN、TP含量等均无显著变化。3)随着氮添加水平的增加,根际土壤的C∶P、N∶P呈上升趋势,非根际土壤的C∶P、N∶P呈下降趋势。4)相对于对照组,氮添加后土壤SOC、TN、NO_(3)^(-)-N、AN、AP、C∶P、N∶P的根际效应呈增加趋势。[结论]本研究表明,氮添加会增强根际效应,提高华北落叶松人工林根际土壤SOC、TN、NO_(3)^(-)-N、AN的含量,且阈值均在80 kg N·ha^(-1)·yr^(-1),而且氮添加会改变土壤磷元素平衡,华北落叶松人工林生长未来可能会面临土壤磷限制。本研究可为大气氮沉降或施肥措施下华北落叶松人工林的养分调控提供理论和科学依据。展开更多
基金funded by the National Key Research and Development Program(grant number 2017YFD0601100)。
文摘Little is known about C-N-P stoichiometries and content in teak(Tectona grandis)plantations in South China,which are mostly sited on hilly areas with lateritic soil,and the effect of slope position on the accumulation of these elements in trees and rhizosphere soils.Here we analyzed the C,N,P content and stoichiometry in leaves,fine roots and rhizosphere soils of trees on the upper and lower slopes of a 12-year-old teak plantation.The Kraft classification system of tree status was used to sample dominant,subdominant and mean trees at each slope position.The results showed that the C,N and P contents in leaves were higher than in fine roots and rhizosphere soils.The lowest C/N,C/P and N/P ratios were found in rhizosphere soils,and the C/N and C/P ratios in fine roots were higher than in leaves.Nutrient accumulation in leaves,fine roots and rhizosphere soils were significantly influenced by slope position and tree class with their interaction mainly showing a greater effect on rhizosphere soils.Leaf C content and C/N ratio,fine root C and P contents,and C/N and C/P ratios all increased distinctly with declining slope position.The contents of organic matter(SOM),ammonium(NH4+-N),nitrate-nitrogen(NO3--N)and available potassium(AK)in rhizosphere soils were mainly enriched on upper slopes,but exchange calcium(ECa),available phosphorus(AP),and pH were relatively lower.Variations in the C,N and P stoichiometries in trees were mainly attributed to the differences in rhizosphere soil properties.N and P contents showed significant positive linear relationships between leaf and rhizosphere soil,and C content negative linear correlation among leaves,fine roots and rhizosphere soils.Chemical properties of rhizosphere soils,particularly C/N and NH4+-N,had significant effects on the leaf nutrients in trees on the upper slope.Correspondingly,rhizosphere soil properties mainly influenced fine root nutrients on the lower slope,and soil AK was the major influencing factor.Overall,these results offer new insights for the sustainability and management of teak plantations in hilly areas.
文摘The data of field studies about mineral nutrient content in the biomass components of young birch stands (9-15 years old) in different forest growing conditions and soil types have been analyzed. In forest growing conditions on fertile soils (ASG, TSC and SP) the total amount of biomass produced by young birch stands divides into fractions as follows: stem wood 51.8%-59.5%; branch wood 9.8%-12.4%; foliage 5.7%-6.8%; stump wood and roots 25%-30%. In forest types on lean soils (TP) the same indices are 32.3%-41.8%, 18.2%-24.2%, 13.2%-16.1% and 26.8%-27.4%, respectively. The stand performance closely correlates with the basic nutrient (P, N, K, C and Mg) availability in forest soils. In lean typicpodzol soils (TP) the content of mineral nutrients is no higher than 20%-48% of that in more fertile soils (ASG, TSC and SP). In young birch stands the take-up of mineral nutrients from 0-40 cm soil layer for developing the above-ground biomass makes a fairly small proportion of the total: up to 4.8%-6.2% for P; 4.9%-12.2% for N; 1.1%-4.1% for K; 11.6% for Ca; 0.8%-7.7% for Mg; in leaner soils the same indices are P 0.1%-0.4%, N 1%-1.5%, K 0.2%-0.6%, Ca 0.1%-0.9%, Mg 0.1%-0.8%, respectively. The analyses of pest damages in young birch stands confirm a hypothesis that the degree of pest damage depends on the stand vitality as described by the site index.
基金financially supported by the Programme of "Effects of Atmospheric Pollutants on Forest Ecosystems" from the Ministry of Agriculture and Foodthe Greek Ministry of Environmentthe European Commission
文摘The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.
基金Supported by National Department Public Benefit Research Foundation(201203013)Modern Agricultural Industry Technology System(CARS-11-B-15)+2 种基金IPNI Project(JIANGSU-10)Special Fund for Agro-scientific Research in the Public Interest(201003014-1-2)Jiangsu Agriculture S&T Self-Innovation Project[CX(12)3037]~~
文摘[Objective] The aim was to explore release characteristics of vinyl chlo- ride-vinyl acetate copolymer controlled-release N fertilizer and the effects on minerat nitrogen in soils. [Method] Vinyl chloride-vinyl acetate copolymer and hydroxyl-modi- fied VCNAc were taken as coating materials to prepare slow release fertilizer. Nutri- ent release characteristics of VC/VAc slow release fertilizer was evaluated by water immersion method and the effects of VC/VAc slow release fertilizer on mineral ni- trogen were researched by pot experiment. [Result] The release periods of VC-VAc controlled-release urea and hydroxyl-modified VC/VAc coated urea were 60 and 50 d, respectively. Furthermore, the content of ammonium nitrogen reached the peak on the 30th d and the content of nitrate nitrogen reached the peak on the 60th d in soils in treatments with VCNAc and hydroxyl-modified VC/VAc; the content of nitrate nitrogen rose again on the 120th d in the treatment with VC/VAc. In terms of wheat yield, different treatments showed insignificant differences and rice yield in the treatment with VCNAc was significantly higher than that in the treatment with hy- droxyl-modified VCNAc (P〈0.05). [Conclusion] The release days of slow controlled- release fertilizer vary upon pot experiment method and water immersion method. Slow controlled-release fertilizer is not suitable for monoculture, due to long fertilizer efficiency, but multiple cropping would be optimal for its role to be fully exploited.
基金funded by the research and demonstration project of teak cultivation of the Chinese Ministry of Science and Technology(2012BAD21B01)
文摘Teak (Tectona grandis L.f.) is widely planted in the world due to its high market demand, economic, ecological and social value. Its plantations have mostly been established and expanded into sites that are acidic to severely acidic in southern China. But, there are no available and specific evidence-based nutrient management techniques. To better recognize and understand the relationship between teak tree growth and nutrient content in the foliage and soil and establish nutrient norms are critical to optimally manage these young plantations. We studied the foliar nutrient and soil chemistry in 19 representative teak plantations aged 5-8 years. Regression analysis indicated that the mean annual increment of teak volume was linearly and positively correlated with foliar N, Ca, Fe and B concentrations, with soil base saturation percentage, available P and Zn concentrations, and negatively correlated with soil Al concentration. Only if the Ca and Mg contents in soil were enhanced, could the increase in soil base saturation percentage benefit teak growth. A revised classification of low-and high-yielding stands was established by using a sorting method of principal components over 6 foliar macro and 8 micro elements in a Diagnosis and Recommendation Integrated System (DRIS). Specific DRIS norms for teak plantations in acid soils were derived. The nutrient balance of N, P, K Ca, Mg, Zn, B with Fe or A1, Ca with Mg, and Fe with AI provided a key to promote the growth of teak in acid soils. Meanwhile, soil Zn was also found as a primary trace element that affected teak growth in this study.
文摘Knowledge of potential anaerobic soil N mineralization is important for nitrogen fertilizer application. Instead of time-consuming laboratory incubation, we attempt to use pedo-transfer functions (PTFs) approach to get this information. 27 soil samples with various soil depths were collected from paddy field, woodland and tea field in subtropical central China, anaerobically incubated at 35°C for 7 weeks to determine N mineralization, which was fitted by a modified double exponential model with two parameters (the fraction of active N pool (f) and mineralization rate constant (k) for active N pool). The PTFs for parameters were developed from significant soil properties using multiple stepwise regression method. Parameter f (range: 1.59% - 10.4%, mean: 5.2%) was mainly correlated with soil total N (TN), organic C (SOC), sand and silt particle contents (r = -0.59 - 0.69, p k (range: 0.027 - 0.155 d-1, mean: 0.97 d-1) was significantly related to TN, SOC, clay content, C to N ratio and pH (r = -0.6 - 0.71, p f (R2 = 0.72, p TN and pH) for parameter k (R2 = 0.61, p < 0.01). The developed PTFs, integrating various land uses and soil depths, suggest that basic soil properties are helpful for estimation of anaerobic soil N mineralization.
基金supported by the Agricultural Science and Technology Fund for Forestry Sci-tech Innovation Project of Shandong Province (No.2019LY005)the National Natural Science Foundation of China (No.31570705)+1 种基金Shandong Province Higher School Science and Technology Plan Project (No. J16LF09)and Shandong Province Natural Science Foundation (No. ZR2018PC006)
文摘Background:Black locust(BL,Robinia pseudoacacia)is considered a promising tree species for reforestation due to its great ability to fix nitrogen.However,after two or three coppice-harvesting rotations,the productivity of BL declines.Whether soil microbial communities are affected and how these groups correlate with the nitrogen mineralization process across multi-generation stands remains unclear.Methods:We investigated the composition and structure of free-living nitrogen-fixing microorganisms(diazotrophs)by sequencing the marker gene nifH and compared these results to levels of soil nitrogen mineralization in the bulk soil and rhizosphere in black locust plantations on Mount Tai,China.Results:The results showed multi-generation BL coppice plantations decreased the total soil nitrogen(N),soil phosphorus(P),soil microbial biomass N(MBN),soil microbial biomass C(MBC),soil nitrification rate(Rn),soil ammonification rate(Ra),and net soil N mineralization rate(Rm),but significantly increased the concentration of soil NH_(4þ)-N to maintain sufficient NO_(3)^(-)N.The dominant species in bulk soil and rhizosphere changed from Rhodopseudomonas(22.62%and 15.76%),unclassified_c_Alphaproteobacteria(22.37%and 29.28%),unclassified_o_Rhizobiales(15.40%and 13.31%),Bradyrhizobium(12.00%and 11.74%)in seedling plantations to Bradyrhizobium(45.95%and 47.86%)and Rhodopseudomonas(43.56%and 41.84%)in coppice plantations,respectively.Mantel test and Redundancy analysis(RDA)revealed that Rn,Ra,and Rm were the most important factors shaping the diazotrophic communities.Conclusions:Our results suggest that the multi-generation BL coppice plantation can homogenize soil diazotrophic communities,which is mainly regulated by the available N loss caused by nitrogen mineralization.Strengthening the management technology of coppice plantations will provide more beneficial external consumption.
文摘Fire has been used to prepare land during tree plantation establishment for many years but uncertainty about how ecosystems respond to prescribed burning makes it difficult to predict the effects of fire on soil nutrients.The aim of this study was to determine the effect of burning accumulated forest residues(slash)on soil chemical properties and how trees respond.We analyzed 40 burned and unburned sites and compared growth of Eucalyptus grandis W.Hill ex Maiden between sites.Soil pH increased by 39%after fire,suggesting reduced soil acidity and increased liming.Total nitrogen increased by 100%;other nutrients(Ca^2+,Mg^2+and K^+)also increased.Increase in nutrients had a significant effect on the growth of E.grandis;larger and taller trees were associated more with burned than unburned sites.This study provides evidence that burning accumulated slash during land preparation prior to plantation establishment alters soil nutrient status and enhances the growth of E.grandis.
文摘Collective efforts to fight mineral nutrient malnutrition in humans require consideration of soil fertility management practices (SFMP) in vegetable production. This study aimed at establishing the relationship between SFMP and vegetable nutrient concentration for human health in farming systems of Tanzania. Soil and vegetable samples collected from vegetable growing areas in Kilombero and Dodoma were analyzed for chemical properties and mineral nutrient concentration. Descriptive statistics, analysis of variance and correlation analysis were employed. The results showed that soil pH in Kilombero ranged from 6.04 to 6.8 and in Dodoma ranged from 6.23 to 8.58. The organic C was low, ranged from 0.10% to 1.87%. All soils studied had sufficient Zn (0.45 to 29.3 mg/kg), Cu (0.71 to 3.23 mg/kg), Fe (3.70 to 171.7 mg/kg) and Mn (2.84 to 41.38 mg/kg). Zinc concentration in all vegetables ranged from 12.57 to 134.54 mg/kg, 14% of vegetables had low Zn (<20 mg/kg) for human health. The Cu concentration in vegetables ranged from 0.07 to 52.37 mg/kg, and vegetables from Kilombero had very low Cu (<0.10 mg/kg) for plant and human nutrition. Vegetable Fe and Mn concentration ranged from 152.95 to 1780 mg/kg and 35.10 to 321.82 mg/kg, respectively. The SFMP used did not affect mineral micronutrients concentration in vegetables, but affected soil Zn, Cu, Fe and Mn concentrations. Soil pH, Zn, and CEC correlated with vegetable Cu, K, Mg, Zn, P and Fe concentrations, and differed among soils. Therefore, soil properties differed with SFMP, and both determined mineral concentrations in vegetables for human health.
基金Hundred Scientists" Project of Ch inese Academy of Sciences.
文摘A comparison study was made for the characteristics of pH value, orga nic matter content, nutrient element N, P and K contents in rhizosphere soils of pure and mixed plantations of Manchurian walnut and Dahurian larch and in bulk soils. The results show that the pH values of rhizosphere soil for all the plant ations except the pure walnut stand, which was slightly higher, were lower than those of bulk soils, while the organic matter contents in the rhizosphere soil f or all the plantations except the mixed plantation, which was slightly lower, we re higher than that in bulk soil. There exists a relative nitrogen accumulation in the rhizosphere and the extent to which the nitrogen accumulates is closely r elated to tree species and mixed pattern. As far as the total P and K contents a re considered, there exists a deficient tendency in rhizosphere in comparison wi th bulk soil. The element N, P and K are all mobilized in the rhizosphere of the pure or mixed plantation, characterized by the higher contents of the available N, P and K in the rhizosphere. The available N content in the rhizosphere of th e larch in mixed plantation was obviously higher than that of its pure plantatio n, whereas the available P and K contents in the rhizosphere of walnut in the mi xed plantation, on the other hand, were significantly higher than those of its p ure plantation.
文摘[目的]大气氮沉降对森林根际与非根际土壤养分有重要影响。华北地区是我国氮沉降高值区之一,然而目前关于氮沉降对该地区森林土壤养分影响的阈值及其是否引起其它养分限制还不清楚。[方法]本研究以河北省木兰林场国有林场的华北落叶松人工林为研究对象,通过多水平氮添加实验(0、5、10、20、40、80、160 kg N·ha^(-1)·yr^(-1)),分析氮添加对根际和非根际土壤在全量养分、速效养分及其生态化学计量的差异影响,旨在揭示氮添加对华北落叶松人工林根际效应的影响。[结果]研究表明:1)根际土壤有机碳(SOC)、总氮(TN)、硝态氮(NO_(3)^(-)-N)和有效氮(AN)含量随氮添加水平呈上升趋势,且都在氮添加为80 kg N·ha^(-1)·yr^(-1)时达到最高值,与对照组相比增加了39.55%、36.27%、56.69%、44.02%。2)非根际土壤NO_(3)^(-)-N在氮添加为160 kg N·ha^(-1)·yr^(-1)时达到最大,与对照组存在显著性差异,不同氮添加水平下SOC、TN、TP含量等均无显著变化。3)随着氮添加水平的增加,根际土壤的C∶P、N∶P呈上升趋势,非根际土壤的C∶P、N∶P呈下降趋势。4)相对于对照组,氮添加后土壤SOC、TN、NO_(3)^(-)-N、AN、AP、C∶P、N∶P的根际效应呈增加趋势。[结论]本研究表明,氮添加会增强根际效应,提高华北落叶松人工林根际土壤SOC、TN、NO_(3)^(-)-N、AN的含量,且阈值均在80 kg N·ha^(-1)·yr^(-1),而且氮添加会改变土壤磷元素平衡,华北落叶松人工林生长未来可能会面临土壤磷限制。本研究可为大气氮沉降或施肥措施下华北落叶松人工林的养分调控提供理论和科学依据。