Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of...Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of a hydrolysate is de- termined by its peptide composition. However, the peptide composition of a hydrolysate depends on proteolytic enzyme and the hydrolysis conditions. In this study, the effect of process conditions on the ACE inhibitory activity of rice dregs hydrolyzed with a trypsin was investigated systematically using response surface methodology. It was shown that the ACE inhibitory activity of rice dregs hydrolysates could be controlled by regulation of five process conditions. Hydrolysis conditions for optimal ACE inhibition were defined using the response surface model of fractional factorial design (FFD), steepest ascent design, and central composite design (CCD).展开更多
以米渣蛋白酶解物作壁材,采用喷雾干燥法制备微胶囊化调和油(富含中链脂肪酸)。通过单因素试验和正交试验确定其最优工艺条件为:芯材含量25%,壁材m(米渣酶解物)∶m(麦芽糊精)=5∶5,乳化剂(m(吐温-80)∶m(单甘酯)∶m(蔗糖酯)=16∶81∶3)...以米渣蛋白酶解物作壁材,采用喷雾干燥法制备微胶囊化调和油(富含中链脂肪酸)。通过单因素试验和正交试验确定其最优工艺条件为:芯材含量25%,壁材m(米渣酶解物)∶m(麦芽糊精)=5∶5,乳化剂(m(吐温-80)∶m(单甘酯)∶m(蔗糖酯)=16∶81∶3)添加量3.0%,羧甲基纤维素添加量0.45%,黄原胶添加量0.1%,45℃乳化20 m in,乳液固形物含量20%,均质压力10 MPa,均质2次,喷雾干燥出风温度90℃。在此条件下,产品微囊化效率达83.6%。展开更多
文摘Angiotensin I-converting enzyme (ACE) inhibitory peptides have been shown to have antihypertensive effects and have been utilized for physiologically functional foods and pharmaceuticals. The ACE inhibitory ability of a hydrolysate is de- termined by its peptide composition. However, the peptide composition of a hydrolysate depends on proteolytic enzyme and the hydrolysis conditions. In this study, the effect of process conditions on the ACE inhibitory activity of rice dregs hydrolyzed with a trypsin was investigated systematically using response surface methodology. It was shown that the ACE inhibitory activity of rice dregs hydrolysates could be controlled by regulation of five process conditions. Hydrolysis conditions for optimal ACE inhibition were defined using the response surface model of fractional factorial design (FFD), steepest ascent design, and central composite design (CCD).
文摘以米渣蛋白酶解物作壁材,采用喷雾干燥法制备微胶囊化调和油(富含中链脂肪酸)。通过单因素试验和正交试验确定其最优工艺条件为:芯材含量25%,壁材m(米渣酶解物)∶m(麦芽糊精)=5∶5,乳化剂(m(吐温-80)∶m(单甘酯)∶m(蔗糖酯)=16∶81∶3)添加量3.0%,羧甲基纤维素添加量0.45%,黄原胶添加量0.1%,45℃乳化20 m in,乳液固形物含量20%,均质压力10 MPa,均质2次,喷雾干燥出风温度90℃。在此条件下,产品微囊化效率达83.6%。