[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With c...[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.展开更多
[ Objective] The study aimed to analyze greenhouse gases emission in rice fields at county level. [ Method] Based on GIS platform of soil system and greenhouse gas emission model, CH4 and N20 emission in rice fields o...[ Objective] The study aimed to analyze greenhouse gases emission in rice fields at county level. [ Method] Based on GIS platform of soil system and greenhouse gas emission model, CH4 and N20 emission in rice fields of Chaohu City during 1990 -2009 were studied by using rice yield, fertilizer, climate and other data. [ Result] From 1990 to 2009, annual emission of CH4 emission in rice fields of Chaohu City varied from 6.47 to 11.67 Gg, and rice area, yield and the rate of straw returning to fields were the main factors influencing CH4 emission. For instance, when the rate of straw returning to fields rose to 30% and 45% respectively, CH4 emission increased by 14.4% and 27.4% separately. Annual emission of N20 in rice fields of Chaohu City from 1990 to 2009 was 0.119 -0.217 Gg. N20 emission rose slowly during 1990 -1998, then it enhanced fast and greatly as the rapid increase of chemical fertilizer and manure in their application after 1998; it reached the maximum value in 2000, then showed a decreasing trend after 2000. Thus, controlling nitrogen input and improving the utilization rate of nitrogenous fertilizer were the fundamental ways to decrease N20 emission in rice fields. [ Conclusion] The research could provide scientific references for the establishment of measures to reduce greenhouse gases emission in rice fields.展开更多
Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient ...Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.展开更多
文摘[Objective] The aim was to analyze the effects of nitrogen dosage on the yield and nitrogen use efficiency of machine transplanted rice using the technology of dry soil preparation in rice paddy field. [Method] With conventional Japonica rice cultivar Shengdao 18 as the study material, the effect of nitrogen dosage on stem and tillers dynamics, yield components and nitrogen use efficiency were investigated using the technology of dry soil preparation in rice paddy field. [Result] The highest yield was 10 957.20 kg/hm^2 as the nitrogen application was 315.00 kg/hm^2. Meanwhile, the roughness ratio, grain-straw ratio and nitrogen use efficiency remained at a higher level. Low nitrogen application could not obtain high yield. In contrast, high nitrogen application quantity led to a significant decline in nitrogen use efficiency. [Conclusion] The study could provide a scientific basis for the further promotion of the technology of dry soil preparation in rice paddy field.
基金Supported by Non-profit Research Foundation for Agriculture(201103039)
文摘[ Objective] The study aimed to analyze greenhouse gases emission in rice fields at county level. [ Method] Based on GIS platform of soil system and greenhouse gas emission model, CH4 and N20 emission in rice fields of Chaohu City during 1990 -2009 were studied by using rice yield, fertilizer, climate and other data. [ Result] From 1990 to 2009, annual emission of CH4 emission in rice fields of Chaohu City varied from 6.47 to 11.67 Gg, and rice area, yield and the rate of straw returning to fields were the main factors influencing CH4 emission. For instance, when the rate of straw returning to fields rose to 30% and 45% respectively, CH4 emission increased by 14.4% and 27.4% separately. Annual emission of N20 in rice fields of Chaohu City from 1990 to 2009 was 0.119 -0.217 Gg. N20 emission rose slowly during 1990 -1998, then it enhanced fast and greatly as the rapid increase of chemical fertilizer and manure in their application after 1998; it reached the maximum value in 2000, then showed a decreasing trend after 2000. Thus, controlling nitrogen input and improving the utilization rate of nitrogenous fertilizer were the fundamental ways to decrease N20 emission in rice fields. [ Conclusion] The research could provide scientific references for the establishment of measures to reduce greenhouse gases emission in rice fields.
基金The study was funded by the National Natural Science Foundation of China(40335047).We thank Professor Xu Zhihong,the Faculty of Environmental Science,Griffith University,Australia,for revising this manuscript.
文摘Field investigation and laboratory analysis of 22 ancient paddy soils excavated at Chuodun site, Kunshan City, Jiangsu Province, China were carried out in 2003 to (1) understand the basic characteristics of ancient paddy soils, (2) compare the difference of soil fertility between ancient paddy soils and recent paddy soils, and (3) inquire into mechanisms of the sustainability of paddy soil. The oldest paddy soils at Chuodun site can be dated back to Neolithic age, around 6000 aBP. These ancient fields were buried in about 1-m deep from the soil surface and their areas ranged from 0.32 to 12.9 m^2 with an average of 5.2 m^2. The paddy soils with 〉 5 000 pellets phytolith g^-1 soil were termed intensively cultivated paddy soils (ICPS) and those with 〈5000 pellets phytolith g^-1 soil were called weakly cultivated soils (WCPS). The contents of organic carbon (OC), and total N in the former were significantly higher than that in the latter. Ancient paddy soils had higher soil pH and C/N, total and available P, and lower contents of OC, DOC, total N, S, Cu, Fe, and available K, S, Fe, Mn, and Cu compared with recent paddy soils, which were attributed to application of chemical and manure fertilizers, pollution and acidification in recent paddy soils. The variation coefficients of OC and other nutrients in ancient paddy soils with higher PI were greater than that in ancient paddy soils with low PI, which indicated that human activities had a great impact on the spatial variability of soil nutrients. The contents of OC, total N, P and S in ancient paddy soils were higher than that in ancient moss of the same age, which indicated that planting rice during Majiabang culture period was beneficial to the accumulation of those life elements.