The great progress in super rice breeding both in China and other countries has been made in recent years. However, there were three main problems in super rice breeding: 1) the super rice varieties were still rare...The great progress in super rice breeding both in China and other countries has been made in recent years. However, there were three main problems in super rice breeding: 1) the super rice varieties were still rare; 2) most super rice varieties exhibited narrow adaptability; and 3) current breeding theories emphasized too much on the rice growth model, but they were unpractical in guidance for rice breeding. According to the authors' experience on the rice breeding, the breeding strategies including three steps (super parent breeding, super hybrid rice breeding and super hybrid rice seed production) were proposed, and the objectives of each step and the key technologies to achieve the goals were elucidated in detail. The super parent of hybrid rice should exhibit excellent performance in all agronomic traits, with the yield or sink capacity reached the level of the hybrid rice control in regional trials. The super hybrid rice combination should meet the following criteria: good rice quality, wide adaptation, lodging resistance, resistance to main insects and diseases, and the yield exceeded above 8% over the control varieties in the national and provincial regional trials. To achieve the goal, the technical strategies, such as selecting optimal combination of the parents, increasing selection pressure, paying more attention to harmony of ideal plant type, excellent physiological traits and all the agronomic traits, should be emphasized. The yield of seed production should reach 3.75 t/ha and 5.25 t/ha for the super hybrid rice combinations derived from early-season and middle-season types of male sterile lines, respectively. The main technologies for raising seed production yield included selecting optimum seed production site, using the male sterile line with large sink capacity and good outcrossing characteristics, and improving the amount of the pollen by intensive cultivation of the male parent. According to the technologies of the three-step breeding on super hybrid rice, two super rice parents, including a male parent 996 and a thermo(photo)-genic male sterile [T(P)GMS] line C815S, were bred. Furthermore, a super early hybrid rice combination, Luliangyou 996, which could be used as a double-season early rice variety in middle and lower reaches of the Yangtze River, China, was bred by using the super rice varlet3, 996 as the male parent, and several hybrid rice combinations with higher yield than control variety in regional trials both of Hunan Province and state were bred with the T(P)GMS line C815S as the female parent.展开更多
Heterotic group theory (HGT) has played a major role in supporting hybrid maize breeding for about 100 years. The basic content and studies of HGT, and its application in rice and maize were summarized in this paper...Heterotic group theory (HGT) has played a major role in supporting hybrid maize breeding for about 100 years. The basic content and studies of HGT, and its application in rice and maize were summarized in this paper. Additionally, difficulties and challenges for hybrid rice breeding in China were analyzed, and necessity and urgency in hybrid rice breeding by using HGT were proposed.展开更多
The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the ma...The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the maize PEPC expression was inherited in the progenies in a Mendelian manner. The transgenic plants had PEPC activity of more than 10-fold higher than untransformed plants. As compared with untransformed plants, the panicle per plant, spikelet per panicle, 1000-grain weight and grain-weight per plant for transgenic plants increased by 14.9 % , 5.7%, 1.3 % and 13.9 %, respectively. By crossing the maize pepc gene was incorporated into the parents of hybrid rice, which were the photo-sensitive genie male sterile (PGMS) lines of two-line hybrid rice such as Peiai64s, 7001s, 2302s, 2304s and 2306s-1, and the BT type of cytoplas-mic male sterile (CMS) line of three-line hybrid rice such as Shuangjiu A, and restorer lines 5129, Wanjing97 in the spring of 1998. The following progresses were made: (1) The inheritance of the high-level expression of the maize PEPC was stable in different genetic background of rice; (2) PEPC activity of hybrid was the mean of the two parents. Its saturated photosynthetic rate (Pn) rose to 50 % higher than that of the receptor parent. These results demonstrated that it is possible to increase the vigor of the rice plant by transgenic approach with maize pepc gene; (3) The activity of PEPC in leaf could be considered as the major physiological index because the correlation coefficient between PEPC activity and Pn was 0.6470* * ; (4) We have developed three rice lines with maize pepc gene; (5) The selection method of high photosynthetic efficiency rice has been established, which includes soaking seeds into solution of hygromycin phosphotransferase to germinate, tracing the pepc gene by PCR analysis, evaluating the performance of the rice plants in the field and examining PEPC activities and Pn of rice plants with maize pepc gene.展开更多
Research on hybrid rice in Jiangsu Province, China began in 1970. Great progress has been made since then, which can be divided into three stages according to the development of hybrid rice breeding and production in ...Research on hybrid rice in Jiangsu Province, China began in 1970. Great progress has been made since then, which can be divided into three stages according to the development of hybrid rice breeding and production in Jiangsu Province. The first stage was beginning stage from 1970 to 1980, when progress was mainly made in cytoplasmic male sterile line breeding. The second stage could be described as developing stage, from 1980 to 1995, when indica hybrid rice was rapidly popularized, and japonica hybrid rice became popular later. From 1996, hybrid rice breeding in Jiangsu Province entered the third stage, when both indica and japonica hybrid rice breeding in the three-line system or intersubspecific hybrid rice breeding in the two-line system made a great breakthrough with the successful breeding of the hybrids Feyou 559, 9 You 138 and Liangyoupeijiu. The developing trend of hybrid rice breeding in Jiangsu Province is also discussed.展开更多
A new sterile line UP-3s, which carries the Dominant Early Maturity Gene (DEMG), was bred on the farm of University of Arkansas at Pine Bluff (UAPB). UP-3s and two check sterile lines, Jin23-A and Xie-A which do not c...A new sterile line UP-3s, which carries the Dominant Early Maturity Gene (DEMG), was bred on the farm of University of Arkansas at Pine Bluff (UAPB). UP-3s and two check sterile lines, Jin23-A and Xie-A which do not carry the Dominant Early Maturity Gene, were crossed with a group of different maturity restorer lines, PB-1R, PB-5R,PB11, PB-13R, PB-20, PB-21, PB-22R, and PB-23R. Eighteen new hybrid rice combinations of these crosses were then tested at UAPB in 2012 and 2013. The results showed that panicle differentiation (PD) of hybrids from female parent UP-3s (DEMG) crossed with the 8 male parents, were earlier than the hybrids from female parent Jin23-A or Xie-A crossed with the 8 male parents. The PD of these earlier hybrids was before Jun 25 and heading was before July 20. Early PD and heading avoided the high temperature (over 34°C) period which usually occurs after July 20 in Arkansas. The yields of these earlier maturity hybrids with female parent UP-3s were higher than those of the late maturity hybrids thatwereF1 progeny of sterile lines Jin23-A or Xie-A (these two female parent checks with non-DEMG). These results showed that the DEMG sterile line UP-3s can be adopted in making crosses with later maturity restorer lines to obtain earlier maturity hybrids to avoid the high temperature period in Arkansas.展开更多
In 1988, we found strain 9003 from compositehybridization of indica and japonica. 9003 pos-sesses characteristics of twin seedlings withfrequency of 15-20% of the investigated popu-lation. The highest frequency was 45...In 1988, we found strain 9003 from compositehybridization of indica and japonica. 9003 pos-sesses characteristics of twin seedlings withfrequency of 15-20% of the investigated popu-lation. The highest frequency was 45.68%.Afterwards, we discovered that some twinseedlings had variabilities in chromosome set.As to a pair of twin plants, it may be 2n-1n,2n-3n, 3n-3n or 1n-1n. The changes in chro-mosome set also occurred in the plants devel-oped from mono-embryo seeds. All of thesevariants nearly account for 1% in our con-trolled experiment. We named the triploidplants SAR-3 and found that SAR-3 could be aresource of diploid true breeding hybrid rice.展开更多
Yujingyou 50 is a new high-quality late indica hybrid rice combination selected by Institute of Grain and Oil Crops,Nanchang Academy of Agricultural Sciences and Hunan Zhonglang seed Industry Co.,Ltd.The combination m...Yujingyou 50 is a new high-quality late indica hybrid rice combination selected by Institute of Grain and Oil Crops,Nanchang Academy of Agricultural Sciences and Hunan Zhonglang seed Industry Co.,Ltd.The combination matured 3 d earlier than Tianyouzhan.It has the characteristics of moderate plant type,broad and long flag leaves,general tillering ability,colorless palea tips,large panicles with many grains,high seed setting rate,average 1000-grain weight,good color change at maturity,and rice quality reaching grade 2 of ministry standard.It was approved by the Jiangxi Provincial Crop Variety Approval Committee on March 18,2021.This paper introduced the breeding process,characteristics,cultivation techniques and key points of seed production of this variety.展开更多
Since the middle of 1980’s, wide compatibility(WC) rice lines have been screened by ricebreeders in China and applied in hybrid ricebreeding program. Several WC lines such asPecos, T984, Lunhui 422, and 02428 withide...Since the middle of 1980’s, wide compatibility(WC) rice lines have been screened by ricebreeders in China and applied in hybrid ricebreeding program. Several WC lines such asPecos, T984, Lunhui 422, and 02428 withideal agronomic characters were identified. Weincorporated the WC gene into restorer linesby crossing these japonica WC lines with ob-tained indica lines. Some WC restorer lineswith indica-japonica medium type were ob-tained and their application value in intersub-specific hybrid rice breeding were evaluated. 1. Effect of crossing methods on selectionefficiencies of WC restorer lines展开更多
Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis t...Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis time,and C84,an indica-japonica intermediate type restorer line with wide compatibility.This combination has the advantages of high yield potential,early maturity,excellent comprehensive agronomic traits and wide adaptability.It was approved by Jiangsu Provincial Crop Variety Approval Committee in June,2018.The breeding process,main characteristics,cultivation techniques and seed production points of the combination were introduced.展开更多
The development of germplasm resources and advances in breeding methods have led to steady increases in yield and quality of rice (Oryza sativa L.). Three milestones in the recent history of rice breeding have contrib...The development of germplasm resources and advances in breeding methods have led to steady increases in yield and quality of rice (Oryza sativa L.). Three milestones in the recent history of rice breeding have contributed to these increases: dwarf rice breeding, hybrid rice breeding, and super rice breeding. On the 50th anniversary of the success of three-line hybrid rice,we highlight important scientific discoveries in rice breeding that were made by Chinese scientists and summarize the broader history of the field. We discuss the strategies that could be used in the future to optimize rice breeding further in the hope that China will continue to play a leading role in international rice breeding.展开更多
Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this ...Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this review, we focus on the progress in and potential of super rice breeding. After the establishment of the breeding theory and strategy of "generating an ideotype with strong heterosis through inter-subspecies hybridization, by using gene pyramiding to combine elite traits through composite-crossing to breed super rice varieties with both ideotype and strong hybrid vigor", a series of major breakthroughs have been achieved in both conventional and super hybrid rice breeding. A number of new genetic materials with ideotype have been created successfully, and the Ministry of Agriculture of China has approved 156 novel super rice varieties and combinations for commercialization. During the Developing the Super Rice Varieties Program, great attention has also been paid to the integration and demonstration of the rice production technology. Collaboration between industry and university researchers has led to technological innovations and initiation of a demonstration system for super hybrid rice. With widespread cultivation of super rice with higher quality and yield, as well as resistance or tolerance to abiotic or biotic stresses, the yield of rice production per unit has reached a new level. In addition to increased quality and yield, hybrid rice breeding has also led to improvements in many other agronomic traits, such as resistance to pests and diseases, resistance to lodging, and optimized light distribution in population. Achievements in super rice breeding and innovation in rice production have made major contributions to the progress in rice sciences and worldwide food security.展开更多
In addition to weed control in direct seeding field of hybrid rice, herbicide resistance genes were used by Chinese scientists to increase and identify the purity of hybrid seeds, and to realize the mechanization of h...In addition to weed control in direct seeding field of hybrid rice, herbicide resistance genes were used by Chinese scientists to increase and identify the purity of hybrid seeds, and to realize the mechanization of hybrid seed production. The elite restorer lines, such as Minghui 63, R752, T461, R402, D68 and E32 were transformed directly with herbicide resistance genes, in which D68 and E32 are restorer lines of two-line system and the others are of three-line system. Because almost all of important restorer lines are indica varieties and are recalcitrant in transformation, many herbicide resistant near-isogenic restorer lines were developed by sexual hybridization of indica and japonica varieties and backcross with indica restorer lines later, such as Ce 64, Minghui 63, Teqing, Milyang 46, R402 and 9311, in which 9311 is a restorer line of two-line system. The elite photoperiod-sensitive/thermo-sensitive genic male sterile lines, such as Pei'ai 64S, P88S, 4008S and 7001S, were transformed with herbicide resistance genes. A few herbicide resistant male sterile lines were developed through sexual hybridization and subsequently systemic selection, such as Bar1259S, Bar2172S, 05Z221A and 05Z227A. With the employment of herbicide resistant male sterile lines or herbicide resistant restorer lines, a few herbicide resistant hybrid rice combinations were developed, such as Xiang 125S/Bar 68-1 and Pei'ai 64S/Bar 9311. Based on herbicide resistance, the research was marching on to investigate the parental lines of hybrid rice with insect resistance, drought tolerance, etc.展开更多
Since the breakthrough of grain yield owing to the development of dwarf rice and three-line system hybrid rice, rice breeding for high yield hardly had showed significant progress in the next successive two decades. I...Since the breakthrough of grain yield owing to the development of dwarf rice and three-line system hybrid rice, rice breeding for high yield hardly had showed significant progress in the next successive two decades. It was considered that utilizing heterosis between subspecific varieties (Oryza sativa L.) would be an effective approach to increase yield further. During 1987-1993, an indica-japonica hybrid Yayou 2 yielded as high as 10.5 t/ha; however, it failed to be commercialized because of seed purity problem due to non-uniform emasculation by chemical agent in seed production, and sensitivity of seed setting in Ft plants to environmental conditions. In the past decade, two inter-subspeific hybrids, Liangyoupeijiu (Peiai 64S/9311, javanica/indica) and Liangyou E32 (Peiai 64S/E32, javanica/ laponica); both of them exhibited grain yield higher than 10.5 t/ha, and were widely judged as the pioneers of super hybrid rice. Liangyoupeijiu has been successfully popularized over 4 million hectare in wide climatic areas, while Liangyou E32 made a yield record and offered a model of plant ideotype for super hybrid rice. It was considered that in combination with plant ideotype, active physiological functions, and wide-range adaptability to ecological conditions, exploitation of indica-japonica heterosis would be the key approach for super hybrid rice breeding.展开更多
To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar with aroma and other desirable grain quality characters such as long grain and low...To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar with aroma and other desirable grain quality characters such as long grain and low chalkiness, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines with good combining ability but poor grain quality. In the meantime, we also conducted the research on the inheritance of aroma for increasing the breeding efficiency. Through years of research and breeding practices, two cytoplasmic male sterile (CMS) lines Xiangxiang 2 A and Xinxiang A and a series of quasi-aromatic hybrids mated from these aromatic CMS lines have been developed and released for commercial production in China. It was found that the inheritance of aroma in MR 365 and its derivatives including Xiangxiang 2 A, Xinxiang A and Xiang 2B S was controlled by one pair of recessive major genes based on the identification of aroma by the KOH-soaking method. We also found that there existed disparity in aroma degree among different grains of F2 generation, and different aromatic CMS lines derived from the same aromatic donor such as Xiangxiang 2 A and Xinxiang A had also a little difference in the degree of aroma, which implies that, besides the major genes, aroma may also be affected by the genetic backgrounds or minor genes. Xiangxiang 2 A, developed from the cross of V20A∥V20B/MR365, is the first aromatic CMS line bred in China. It is not only aromatic but has good grain quality and combining ability. Using it as female parent, Xiangyou 63 (Xiangxiang 2A/Minghui 63), the first quasi-aromatic hybrid rice combination in China, was developed and approved to release to farmers in 1995. Xiangyou 63 is characteristic of quasi-aromatic or partially aromatic (because only a portion of or NOT ALL grains are aromatic), good grain quality, high-yielding ability, good blast resistance and wide adaptability. However, Xiangxiang 2 A has an evident drawback, i.e., instablility in male sterility under higher temperature conditions resulting from the existence of restoring minor genes in it, which greatly hampered the extension of its elite hybrid Xiangyou 63 with both high yield and fine quality in commercial production.To improve Xiangxiang 2 A, we made hybridization of Xiangxiang 2 B with V20 B again in 1990. A new aromatic CMS line Xinxiang A was successfully developed in 1994. It not only retains the favorable characteristics of Xiangxiang 2 A in grain quality and combining ability, but also expresses complete and stable male sterility and high seed production yield potential. Up to now, by using it as female parent, a series of quasi-aromatic hybrids have been developed. Some of them such as Xinxiangyou 63 (Xinxiang A/Minghui 63), Xinxiangyou 77 (Xinxiang A/Minghui 77), Xinxiangyou 80 (Xinxiang A/R80), Xinxiangyou 207 (Xinxiang A/R207) and Xinxiangyou 96 (Xinxiang A/R96) have been released to farmers. Such hybrids have been preferred and well welcome by the farmers in China, because they can not only yield higher or as high as but also possess a better grain quality than the current common high-yielding hybrid rice varieties, especially, they are naturally-mixed aromatic rice so that it can be consumed daily just like non-aromatic common rice. The planting area under these hybrids is increasing rapidly in China. It is expected that the quasi-aromatic hybrid rice will have a good prospect in the coming years.展开更多
To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar, from IRRI in 1984 and began to transfer its aroma and good quality characters int...To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines. In the meantime, the research on the inheritance of aroma for increasing the breeding efficiency was also conducted.It was found that the inheritance of aroma in MR 365 and its derivatives was controlled by one pair of recessive major genes based on the KOH-soaking method. There existed disparity in aroma degree among different grains of F2 generation, and different aromatic CMS lines derived from the same aromatic donor had also a little difference in the degree of aroma, which implies that, besides the major genes, aroma may also be affected by the genetic backgrounds or minor genes.Xiangxiang 2A, developed from the cross of V20A//V20B/MR365, is the first aromatic CMS line bred in China. It is not only aromatic but also has good grain quality and combining ability. Using it as female parent, Xiangyou 63 (Xiangxiang 2A / Minghui 63), the first quasi-aromatic hybrid rice combination in China, was developed, and released to farmers in 1995. Xiangyou 63 is characteristic of quasi-aromatic or partially aromatic (because only a portion of or not all grains are aromatic), good grain quality, high-yielding ability, good blast resistance and wide adaptability.展开更多
This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 ...This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.展开更多
The breeding history and commercial exploitation of japonica hybrid rice in Anhu decades were reviewed. Besides, the bottleneck problems restricting the development of summarized, and corresponding technological count...The breeding history and commercial exploitation of japonica hybrid rice in Anhu decades were reviewed. Besides, the bottleneck problems restricting the development of summarized, and corresponding technological countermeasures were proposed. Province, China over the last three japonica hybrid rice in China were展开更多
Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' fo...Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia.展开更多
Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assist...Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.展开更多
Xiangxiang 2A has an evident drawback, i.e., instability in male sterility under higher temperature conditions resulting from the existence of minor restoring genes in it, which greatly hampered the extension of its e...Xiangxiang 2A has an evident drawback, i.e., instability in male sterility under higher temperature conditions resulting from the existence of minor restoring genes in it, which greatly hampered the extension of its elite hybrid Xiangyou 63 with both high yield and fine quality in commercial production. To improve Xiangxiang 2A, the hybridization of Xiangxiang 2B with V20 B was made again in 1990. A new aromatic CMS line Xinxiang A was successfully developed in 1994. It not only retains the favorable characteristics of Xiangxiang 2A in grain quality and combining ability, but also expresses complete and stable male sterility and high seed production yield potential. Up to now, by using it as female parent, a series of quasi aromatic hybrids have been developed. Some of them have been released to farmers. Because such hybrids can not only yield higher or as high as but also possess a better grain quality than the current common high yielding hybrid rice varieties,so that they are preferred and well welcome by the farmers in China. The planting area under these hybrids is increasing rapidly in China.展开更多
文摘The great progress in super rice breeding both in China and other countries has been made in recent years. However, there were three main problems in super rice breeding: 1) the super rice varieties were still rare; 2) most super rice varieties exhibited narrow adaptability; and 3) current breeding theories emphasized too much on the rice growth model, but they were unpractical in guidance for rice breeding. According to the authors' experience on the rice breeding, the breeding strategies including three steps (super parent breeding, super hybrid rice breeding and super hybrid rice seed production) were proposed, and the objectives of each step and the key technologies to achieve the goals were elucidated in detail. The super parent of hybrid rice should exhibit excellent performance in all agronomic traits, with the yield or sink capacity reached the level of the hybrid rice control in regional trials. The super hybrid rice combination should meet the following criteria: good rice quality, wide adaptation, lodging resistance, resistance to main insects and diseases, and the yield exceeded above 8% over the control varieties in the national and provincial regional trials. To achieve the goal, the technical strategies, such as selecting optimal combination of the parents, increasing selection pressure, paying more attention to harmony of ideal plant type, excellent physiological traits and all the agronomic traits, should be emphasized. The yield of seed production should reach 3.75 t/ha and 5.25 t/ha for the super hybrid rice combinations derived from early-season and middle-season types of male sterile lines, respectively. The main technologies for raising seed production yield included selecting optimum seed production site, using the male sterile line with large sink capacity and good outcrossing characteristics, and improving the amount of the pollen by intensive cultivation of the male parent. According to the technologies of the three-step breeding on super hybrid rice, two super rice parents, including a male parent 996 and a thermo(photo)-genic male sterile [T(P)GMS] line C815S, were bred. Furthermore, a super early hybrid rice combination, Luliangyou 996, which could be used as a double-season early rice variety in middle and lower reaches of the Yangtze River, China, was bred by using the super rice varlet3, 996 as the male parent, and several hybrid rice combinations with higher yield than control variety in regional trials both of Hunan Province and state were bred with the T(P)GMS line C815S as the female parent.
基金supported by the grant from the program of Introducing Talents of Discipline to University of China(Grant No.B08025)
文摘Heterotic group theory (HGT) has played a major role in supporting hybrid maize breeding for about 100 years. The basic content and studies of HGT, and its application in rice and maize were summarized in this paper. Additionally, difficulties and challenges for hybrid rice breeding in China were analyzed, and necessity and urgency in hybrid rice breeding by using HGT were proposed.
文摘The results of the investigation on transgenic rice with maize C4-specific phosphoenolpyruvate carboxylase (pepc) gene showed that the transgenic rice plants with the maize pepc gene expressed at high level and the maize PEPC expression was inherited in the progenies in a Mendelian manner. The transgenic plants had PEPC activity of more than 10-fold higher than untransformed plants. As compared with untransformed plants, the panicle per plant, spikelet per panicle, 1000-grain weight and grain-weight per plant for transgenic plants increased by 14.9 % , 5.7%, 1.3 % and 13.9 %, respectively. By crossing the maize pepc gene was incorporated into the parents of hybrid rice, which were the photo-sensitive genie male sterile (PGMS) lines of two-line hybrid rice such as Peiai64s, 7001s, 2302s, 2304s and 2306s-1, and the BT type of cytoplas-mic male sterile (CMS) line of three-line hybrid rice such as Shuangjiu A, and restorer lines 5129, Wanjing97 in the spring of 1998. The following progresses were made: (1) The inheritance of the high-level expression of the maize PEPC was stable in different genetic background of rice; (2) PEPC activity of hybrid was the mean of the two parents. Its saturated photosynthetic rate (Pn) rose to 50 % higher than that of the receptor parent. These results demonstrated that it is possible to increase the vigor of the rice plant by transgenic approach with maize pepc gene; (3) The activity of PEPC in leaf could be considered as the major physiological index because the correlation coefficient between PEPC activity and Pn was 0.6470* * ; (4) We have developed three rice lines with maize pepc gene; (5) The selection method of high photosynthetic efficiency rice has been established, which includes soaking seeds into solution of hygromycin phosphotransferase to germinate, tracing the pepc gene by PCR analysis, evaluating the performance of the rice plants in the field and examining PEPC activities and Pn of rice plants with maize pepc gene.
文摘Research on hybrid rice in Jiangsu Province, China began in 1970. Great progress has been made since then, which can be divided into three stages according to the development of hybrid rice breeding and production in Jiangsu Province. The first stage was beginning stage from 1970 to 1980, when progress was mainly made in cytoplasmic male sterile line breeding. The second stage could be described as developing stage, from 1980 to 1995, when indica hybrid rice was rapidly popularized, and japonica hybrid rice became popular later. From 1996, hybrid rice breeding in Jiangsu Province entered the third stage, when both indica and japonica hybrid rice breeding in the three-line system or intersubspecific hybrid rice breeding in the two-line system made a great breakthrough with the successful breeding of the hybrids Feyou 559, 9 You 138 and Liangyoupeijiu. The developing trend of hybrid rice breeding in Jiangsu Province is also discussed.
文摘A new sterile line UP-3s, which carries the Dominant Early Maturity Gene (DEMG), was bred on the farm of University of Arkansas at Pine Bluff (UAPB). UP-3s and two check sterile lines, Jin23-A and Xie-A which do not carry the Dominant Early Maturity Gene, were crossed with a group of different maturity restorer lines, PB-1R, PB-5R,PB11, PB-13R, PB-20, PB-21, PB-22R, and PB-23R. Eighteen new hybrid rice combinations of these crosses were then tested at UAPB in 2012 and 2013. The results showed that panicle differentiation (PD) of hybrids from female parent UP-3s (DEMG) crossed with the 8 male parents, were earlier than the hybrids from female parent Jin23-A or Xie-A crossed with the 8 male parents. The PD of these earlier hybrids was before Jun 25 and heading was before July 20. Early PD and heading avoided the high temperature (over 34°C) period which usually occurs after July 20 in Arkansas. The yields of these earlier maturity hybrids with female parent UP-3s were higher than those of the late maturity hybrids thatwereF1 progeny of sterile lines Jin23-A or Xie-A (these two female parent checks with non-DEMG). These results showed that the DEMG sterile line UP-3s can be adopted in making crosses with later maturity restorer lines to obtain earlier maturity hybrids to avoid the high temperature period in Arkansas.
文摘In 1988, we found strain 9003 from compositehybridization of indica and japonica. 9003 pos-sesses characteristics of twin seedlings withfrequency of 15-20% of the investigated popu-lation. The highest frequency was 45.68%.Afterwards, we discovered that some twinseedlings had variabilities in chromosome set.As to a pair of twin plants, it may be 2n-1n,2n-3n, 3n-3n or 1n-1n. The changes in chro-mosome set also occurred in the plants devel-oped from mono-embryo seeds. All of thesevariants nearly account for 1% in our con-trolled experiment. We named the triploidplants SAR-3 and found that SAR-3 could be aresource of diploid true breeding hybrid rice.
基金Supported by Jiangxi Provincial R&D Program(20181BBF60007)。
文摘Yujingyou 50 is a new high-quality late indica hybrid rice combination selected by Institute of Grain and Oil Crops,Nanchang Academy of Agricultural Sciences and Hunan Zhonglang seed Industry Co.,Ltd.The combination matured 3 d earlier than Tianyouzhan.It has the characteristics of moderate plant type,broad and long flag leaves,general tillering ability,colorless palea tips,large panicles with many grains,high seed setting rate,average 1000-grain weight,good color change at maturity,and rice quality reaching grade 2 of ministry standard.It was approved by the Jiangxi Provincial Crop Variety Approval Committee on March 18,2021.This paper introduced the breeding process,characteristics,cultivation techniques and key points of seed production of this variety.
文摘Since the middle of 1980’s, wide compatibility(WC) rice lines have been screened by ricebreeders in China and applied in hybrid ricebreeding program. Several WC lines such asPecos, T984, Lunhui 422, and 02428 withideal agronomic characters were identified. Weincorporated the WC gene into restorer linesby crossing these japonica WC lines with ob-tained indica lines. Some WC restorer lineswith indica-japonica medium type were ob-tained and their application value in intersub-specific hybrid rice breeding were evaluated. 1. Effect of crossing methods on selectionefficiencies of WC restorer lines
基金Supported by National Key R&D Program of China(2017YFD0100405)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-201X-CNRRI)+3 种基金Independent Research Project of State Key Laboratory of Rice Biology(2017ZZKT10204)the Major Scientific Technological Project of New Varieties of Agriculture(Grain)of Zhejiang Province(2016C02050-5-1)the Fundamental Research Fund for China National Rice Research Institute(2017RG003-1)Breeding of High-yield Genetically Modified Rice Varieties(2016ZX08001004-001)
文摘Chunyou 284 is a medium- japonica hybrid combination,as well as an indica-japonica subspecific hyrbid with super-high yield,which was developed from Chunjiang 23A,a thermo-sensitive CMS line with very early anthesis time,and C84,an indica-japonica intermediate type restorer line with wide compatibility.This combination has the advantages of high yield potential,early maturity,excellent comprehensive agronomic traits and wide adaptability.It was approved by Jiangsu Provincial Crop Variety Approval Committee in June,2018.The breeding process,main characteristics,cultivation techniques and seed production points of the combination were introduced.
基金supported by the National Natural Science Foundation of China (32188102)the Rescue Conservation of Rare and Endangered Germplasm Resources of Major Grain and Oil Crops (2021YFD1200100)the Key R&D Programs of Hainan Province (ZDYF2022XDNY260)。
文摘The development of germplasm resources and advances in breeding methods have led to steady increases in yield and quality of rice (Oryza sativa L.). Three milestones in the recent history of rice breeding have contributed to these increases: dwarf rice breeding, hybrid rice breeding, and super rice breeding. On the 50th anniversary of the success of three-line hybrid rice,we highlight important scientific discoveries in rice breeding that were made by Chinese scientists and summarize the broader history of the field. We discuss the strategies that could be used in the future to optimize rice breeding further in the hope that China will continue to play a leading role in international rice breeding.
基金supported by the National Key Research and Development Program of China(2016YFD0300504)the earmarked fund for China Agriculture Research System(CARS-01-13)the Special Fund for Agro-scientific Research in the Public Interest,China(201603002)
文摘Super rice breeding in China has been very successful over the past 3 decades, and the Chinese government has made great efforts to support breeding and cultivation of both conventional and hybrid super rice. In this review, we focus on the progress in and potential of super rice breeding. After the establishment of the breeding theory and strategy of "generating an ideotype with strong heterosis through inter-subspecies hybridization, by using gene pyramiding to combine elite traits through composite-crossing to breed super rice varieties with both ideotype and strong hybrid vigor", a series of major breakthroughs have been achieved in both conventional and super hybrid rice breeding. A number of new genetic materials with ideotype have been created successfully, and the Ministry of Agriculture of China has approved 156 novel super rice varieties and combinations for commercialization. During the Developing the Super Rice Varieties Program, great attention has also been paid to the integration and demonstration of the rice production technology. Collaboration between industry and university researchers has led to technological innovations and initiation of a demonstration system for super hybrid rice. With widespread cultivation of super rice with higher quality and yield, as well as resistance or tolerance to abiotic or biotic stresses, the yield of rice production per unit has reached a new level. In addition to increased quality and yield, hybrid rice breeding has also led to improvements in many other agronomic traits, such as resistance to pests and diseases, resistance to lodging, and optimized light distribution in population. Achievements in super rice breeding and innovation in rice production have made major contributions to the progress in rice sciences and worldwide food security.
文摘In addition to weed control in direct seeding field of hybrid rice, herbicide resistance genes were used by Chinese scientists to increase and identify the purity of hybrid seeds, and to realize the mechanization of hybrid seed production. The elite restorer lines, such as Minghui 63, R752, T461, R402, D68 and E32 were transformed directly with herbicide resistance genes, in which D68 and E32 are restorer lines of two-line system and the others are of three-line system. Because almost all of important restorer lines are indica varieties and are recalcitrant in transformation, many herbicide resistant near-isogenic restorer lines were developed by sexual hybridization of indica and japonica varieties and backcross with indica restorer lines later, such as Ce 64, Minghui 63, Teqing, Milyang 46, R402 and 9311, in which 9311 is a restorer line of two-line system. The elite photoperiod-sensitive/thermo-sensitive genic male sterile lines, such as Pei'ai 64S, P88S, 4008S and 7001S, were transformed with herbicide resistance genes. A few herbicide resistant male sterile lines were developed through sexual hybridization and subsequently systemic selection, such as Bar1259S, Bar2172S, 05Z221A and 05Z227A. With the employment of herbicide resistant male sterile lines or herbicide resistant restorer lines, a few herbicide resistant hybrid rice combinations were developed, such as Xiang 125S/Bar 68-1 and Pei'ai 64S/Bar 9311. Based on herbicide resistance, the research was marching on to investigate the parental lines of hybrid rice with insect resistance, drought tolerance, etc.
文摘Since the breakthrough of grain yield owing to the development of dwarf rice and three-line system hybrid rice, rice breeding for high yield hardly had showed significant progress in the next successive two decades. It was considered that utilizing heterosis between subspecific varieties (Oryza sativa L.) would be an effective approach to increase yield further. During 1987-1993, an indica-japonica hybrid Yayou 2 yielded as high as 10.5 t/ha; however, it failed to be commercialized because of seed purity problem due to non-uniform emasculation by chemical agent in seed production, and sensitivity of seed setting in Ft plants to environmental conditions. In the past decade, two inter-subspeific hybrids, Liangyoupeijiu (Peiai 64S/9311, javanica/indica) and Liangyou E32 (Peiai 64S/E32, javanica/ laponica); both of them exhibited grain yield higher than 10.5 t/ha, and were widely judged as the pioneers of super hybrid rice. Liangyoupeijiu has been successfully popularized over 4 million hectare in wide climatic areas, while Liangyou E32 made a yield record and offered a model of plant ideotype for super hybrid rice. It was considered that in combination with plant ideotype, active physiological functions, and wide-range adaptability to ecological conditions, exploitation of indica-japonica heterosis would be the key approach for super hybrid rice breeding.
文摘To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar with aroma and other desirable grain quality characters such as long grain and low chalkiness, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines with good combining ability but poor grain quality. In the meantime, we also conducted the research on the inheritance of aroma for increasing the breeding efficiency. Through years of research and breeding practices, two cytoplasmic male sterile (CMS) lines Xiangxiang 2 A and Xinxiang A and a series of quasi-aromatic hybrids mated from these aromatic CMS lines have been developed and released for commercial production in China. It was found that the inheritance of aroma in MR 365 and its derivatives including Xiangxiang 2 A, Xinxiang A and Xiang 2B S was controlled by one pair of recessive major genes based on the identification of aroma by the KOH-soaking method. We also found that there existed disparity in aroma degree among different grains of F2 generation, and different aromatic CMS lines derived from the same aromatic donor such as Xiangxiang 2 A and Xinxiang A had also a little difference in the degree of aroma, which implies that, besides the major genes, aroma may also be affected by the genetic backgrounds or minor genes. Xiangxiang 2 A, developed from the cross of V20A∥V20B/MR365, is the first aromatic CMS line bred in China. It is not only aromatic but has good grain quality and combining ability. Using it as female parent, Xiangyou 63 (Xiangxiang 2A/Minghui 63), the first quasi-aromatic hybrid rice combination in China, was developed and approved to release to farmers in 1995. Xiangyou 63 is characteristic of quasi-aromatic or partially aromatic (because only a portion of or NOT ALL grains are aromatic), good grain quality, high-yielding ability, good blast resistance and wide adaptability. However, Xiangxiang 2 A has an evident drawback, i.e., instablility in male sterility under higher temperature conditions resulting from the existence of restoring minor genes in it, which greatly hampered the extension of its elite hybrid Xiangyou 63 with both high yield and fine quality in commercial production.To improve Xiangxiang 2 A, we made hybridization of Xiangxiang 2 B with V20 B again in 1990. A new aromatic CMS line Xinxiang A was successfully developed in 1994. It not only retains the favorable characteristics of Xiangxiang 2 A in grain quality and combining ability, but also expresses complete and stable male sterility and high seed production yield potential. Up to now, by using it as female parent, a series of quasi-aromatic hybrids have been developed. Some of them such as Xinxiangyou 63 (Xinxiang A/Minghui 63), Xinxiangyou 77 (Xinxiang A/Minghui 77), Xinxiangyou 80 (Xinxiang A/R80), Xinxiangyou 207 (Xinxiang A/R207) and Xinxiangyou 96 (Xinxiang A/R96) have been released to farmers. Such hybrids have been preferred and well welcome by the farmers in China, because they can not only yield higher or as high as but also possess a better grain quality than the current common high-yielding hybrid rice varieties, especially, they are naturally-mixed aromatic rice so that it can be consumed daily just like non-aromatic common rice. The planting area under these hybrids is increasing rapidly in China. It is expected that the quasi-aromatic hybrid rice will have a good prospect in the coming years.
文摘To improve grain quality of the high-yielding hybrid rice in China, we introduced the aromatic rice MR365, an improved Indian cultivar, from IRRI in 1984 and began to transfer its aroma and good quality characters into the existing maintainer lines. In the meantime, the research on the inheritance of aroma for increasing the breeding efficiency was also conducted.It was found that the inheritance of aroma in MR 365 and its derivatives was controlled by one pair of recessive major genes based on the KOH-soaking method. There existed disparity in aroma degree among different grains of F2 generation, and different aromatic CMS lines derived from the same aromatic donor had also a little difference in the degree of aroma, which implies that, besides the major genes, aroma may also be affected by the genetic backgrounds or minor genes.Xiangxiang 2A, developed from the cross of V20A//V20B/MR365, is the first aromatic CMS line bred in China. It is not only aromatic but also has good grain quality and combining ability. Using it as female parent, Xiangyou 63 (Xiangxiang 2A / Minghui 63), the first quasi-aromatic hybrid rice combination in China, was developed, and released to farmers in 1995. Xiangyou 63 is characteristic of quasi-aromatic or partially aromatic (because only a portion of or not all grains are aromatic), good grain quality, high-yielding ability, good blast resistance and wide adaptability.
基金supported by the National Natural Science Foundation of China(31271659)the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2012BAD04B10 2011BAD16B01, 2013BAD07B14)
文摘This article reviews the history and progress of hybrid rice development. Hybrid rice research was initiated back in 1964, and commercialized in 1976. Three-line and two-line system hybrid rice were developed in 1974 and 1995, respectively. Research on super hybrid rice, which was first launched by Ministry of Agriculture, China in 1996, is discussed, and the great progress of super hybrid rice had been achieved with a new yield record by 15.4 t ha^-1 in the 6.84 ha demonstration location in Xupu, Hunan Province, China in 2014. And the mechanism of heterosis, the techniques of hybrid seed production and the modern field managements in hybrid rice over the past decades are also discussed. Additionally, this article dealt with the intellectual property protection(IPR) and development of hybrid rice seed industry in China. Major factors that constrain hybrid rice development are analyzed and possible solutions to this problems are proposed. Finally, the authors present methods to further increase production yield, and propose an improvement for breeding super high-yielding hybrid rice based on these methods.
基金supported by National‘863’Program of China(2004AA211091,2002AA207001).
文摘The breeding history and commercial exploitation of japonica hybrid rice in Anhu decades were reviewed. Besides, the bottleneck problems restricting the development of summarized, and corresponding technological countermeasures were proposed. Province, China over the last three japonica hybrid rice in China were
文摘Since 1980s, rice breeding for resistance to bacterial blight has been rapidly progressing in China. The gene Xa4 was mainly used in three-line indica hybrid and two-line hybrid rice. The disease has been 'quiet' for 20 years in China, yet in recent years it has gradually emerged and been prevalent in fields planted with newly released rice varieties in the Changjiang River valley. Under the circumstances, scientists inevitably raised several questions: what causes the resurgence and what should we do next? And/or is resistance breeding still one of the main objectives in rice improvement? Which approach do we take on resistance breeding so that the resistance will be more durable, and the resistance gene will be used more efficiently? A combined strategy involving traditional method, molecular marker-assisted selection, and transgenic technology should bring a new era to the bacterial blight resistance hybrid rice breeding program. This review also briefly discusses and deliberates on issues related to the broadening of bacterial blight resistance, and suitable utilization of resistance genes, alternate planting of available resistance genes; and understands the virulent populations of the bacterial pathogen in China even in Asia.
文摘Two bacterial blight (BB) resistance genes, Xa21 and Xa4, from IRBB24 were introduced into hybrid rice restorer line Mianhui 725, which is highly susceptible to BB, by using hybridization and molecular marker-assisted selection technology. Four homologous restorer lines were obtained through testing the R target genes with molecular markers and analyzing parental genetic background. Inoculation of the four lines and their hybrids with the specific strains of Xanthomonas oryzae pv. oryzae, P1, P6 and seven representative strains of Chinese pathotype, C Ⅰ -CⅦ, showed that all of the four lines and their hybrids were highly resistant and presented broad resistance-spectrum to BB. The hybrids of G46A / R207-2 displayed good agronomic characters and high yield potential, and R207-2 was named Shuhui 207.
文摘Xiangxiang 2A has an evident drawback, i.e., instability in male sterility under higher temperature conditions resulting from the existence of minor restoring genes in it, which greatly hampered the extension of its elite hybrid Xiangyou 63 with both high yield and fine quality in commercial production. To improve Xiangxiang 2A, the hybridization of Xiangxiang 2B with V20 B was made again in 1990. A new aromatic CMS line Xinxiang A was successfully developed in 1994. It not only retains the favorable characteristics of Xiangxiang 2A in grain quality and combining ability, but also expresses complete and stable male sterility and high seed production yield potential. Up to now, by using it as female parent, a series of quasi aromatic hybrids have been developed. Some of them have been released to farmers. Because such hybrids can not only yield higher or as high as but also possess a better grain quality than the current common high yielding hybrid rice varieties,so that they are preferred and well welcome by the farmers in China. The planting area under these hybrids is increasing rapidly in China.