Rice is the main food of Sierra Leoneans and an important source of employment and income for rural communities. According to the West African Rice Development Association report, annual consumption of rice is amongst...Rice is the main food of Sierra Leoneans and an important source of employment and income for rural communities. According to the West African Rice Development Association report, annual consumption of rice is amongst the highest in SubSaharan Africa(SSA), 104 kg. Mainly, small scale farmers who are resource poor on both the upland and various lowlands grow rice. Sierra Leone has not been able to produce enough rice to meet its local consumption demand for a very long time now. 530 000 MT of milled rice is the required consumption need of the Sierra Leonean population per annum. In 2007, national paddy rice production was projected at 638 000 MT. The level of rice self-sufficiency rose from 50.57% in 2002 to 62.15% in 2006 and then to 63.49% in 2007. The remainder must be imported at increasingly expensive prices in the current situation of high food prices, which includes rice. The price of rice has seen a steady increase in the entire country. What most affected by this, is the low-income urban and peri-urban households. The promotion of domestic rice production is therefore a key element in the strategies for improving rice self-sufficiency, stimulating economic growth and increasing rural income. Therefore, supporting rice production programme is the only solution to pull the country out of the worsening rice situation and maintain the present trend in rice self-sufficiency. Therefore, having an understanding of the strategic interventions in rice production in Sierra Leone is an important ingredient in the promotion and attainment of rice self-sufficiency.展开更多
The status, advantages and disadvantages of rice production in East Timor were investigated and analyzed, the results of comparison test and demonstrative cultivation through introducing 15 Chinese hybrid rice combina...The status, advantages and disadvantages of rice production in East Timor were investigated and analyzed, the results of comparison test and demonstrative cultivation through introducing 15 Chinese hybrid rice combinations into East Timor were summarized, the feasibility of developing hybrid rice in East Timor to realize food self-sufficiency were discussed and demonstrated, and the main corresponding technical strategies were proposed in this paper.展开更多
The stochastic production function estimates of rice and maize in Senegal River Valley demonstrate the possibility to reach self-sufficiency of rice in Senegal. Nonetheless, its fulfillment requires many accompanying ...The stochastic production function estimates of rice and maize in Senegal River Valley demonstrate the possibility to reach self-sufficiency of rice in Senegal. Nonetheless, its fulfillment requires many accompanying measures in rice and maize production. These measures include all upstream and downstream activities related to agricultural production for their efficiency and sustainability in rice and maize production to maintain the country's comparative advantages and competitiveness. Then priorities should be given to agricultural infrastructure building, establishment of credit markets, and providing an easy access of production factors (e.g., improved land, fertilizers, improved and certified seeds, as well as agricultural machines). Furthermore, policy makers should provide a larger incentive in terms of producer price to encourage farmers to increase considerably their outputs, thereby farmers face smaller risk of having non-sold outputs. And during an early harvesting period, appropriate policy measures are in need to prevent farmers from dumping their products under severe social and economic pressures such as children schooling and loan payment, etc展开更多
A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar...A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.展开更多
This paper seeks to explore the role of Remote Sensing in solving the agriculture related problems, which are the basic issues of sustainable development.
Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant ...Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.展开更多
Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary ...Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.展开更多
Most Japanese are enjoying rich and convenient dietary habits nowadays. However, majorities of Japanese are feeling anxiety about the future food supply because Japan's food self-sufficiency ratio has fallen most rap...Most Japanese are enjoying rich and convenient dietary habits nowadays. However, majorities of Japanese are feeling anxiety about the future food supply because Japan's food self-sufficiency ratio has fallen most rapidly in the last 45 years, and is lowest amongst countries with a population of more than 100 million. Major causes and mechanisms of the decline in the food self-sufficiency ratio over the last 45 years were analyzed. Drastic changes of dietary habits under rapid economic growth and sharp appreciation of the yen against the US dollar were found to be the major causes of the sharp decline of the food self-sufficiency ratio. Preliminary projections about the food self-sufficiency ratio in 2015 were carried out, and it was found that it will not be easy to achieve the policy goal of raising the food self-sufficiency ratio to 45% by 2015.展开更多
Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while r...Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.展开更多
Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and frag...Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.展开更多
We investigate the weight-based food self-sufficiency ratio (WSSR) for Japan over a 50-year period (1961-2011) by applying factorial component analysis technique in order to measure the changes of the WSSR quantitativ...We investigate the weight-based food self-sufficiency ratio (WSSR) for Japan over a 50-year period (1961-2011) by applying factorial component analysis technique in order to measure the changes of the WSSR quantitatively. Quantitative data analysis is employed to determine the drivers of those changes. Numerical results show that Japan experienced a drastic decline in its food self-sufficiency ratio (FSSR) during the above period. The factorial component analysis shows that such a decline was caused by the changes in the FSSR of the food groups/items, not in the quantity of the food supply. A number of characteristics of those changes are presented and a list of major food groups that have major impacts on the changes is constructed. The findings in this paper reiterate the alarming food security problem in Japan and provide clear insight into the causes of this problem. The findings in this study pick up where previous studies have left off, aid the food-related policy-making process and identify new ideas for future food research.展开更多
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an...The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.展开更多
Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improv...Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.展开更多
Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibit...Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 neg...Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 negatively regulated cold tolerance in rice seedlings as a cleavage target of miR1320.PHD17 expression was greatly induced by cold stress,and was down-regulated by miR1320 overexpression and up-regulated by miR1320 knockdown.Through 5'RACE and dual luciferase assays,we found that miR1320 targeted and cleaved the 3'UTR region of PHD17.PHD17 was a nuclearlocalized protein and acted as a transcriptional activator in yeast.PHD17 overexpression reduced cold tolerance of rice seedlings,while knockout of PHD17 increased cold tolerance,partially via the CBF cold signaling.By combining transcriptomic and physiological analyses,we demonstrated that PHD17 modulated ROS homeostasis and flavonoid accumulation under cold stress.K-means clustering analysis revealed that differentially expressed genes in PHD17 transgenic lines were significantly enriched in the jasmonic acid(JA)biosynthesis pathway,and expression of JA biosynthesis and signaling genes was verified to be affected by PHD17.Cold stress tests applied with MeJA or IBU(JA synthesis inhibitor)further suggested the involvement of PHD17 in JA-mediated cold signaling.Taken together,our results suggest that PHD17 acts downstream of miR1320 and negatively regulates cold tolerance of rice seedlings through JA-mediated signaling pathway.展开更多
Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive s...Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of ...A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of the plant.At low temperature,LTIA1 and LTIA2 redundantly affect chlorophyll levels,non-photochemical quenching,photosynthetic quantum yield of PSⅡand seedling growth.LTIA1 and LTIA2 proteins are involved in splicing of atp F and the biogenesis of 16S and 23S rRNA in chloroplasts.Presence/absence variation of LTIA1,the ancestral copy,was found only in japonica but that of LTIA2 in all rice subgroups.Accessions with LTIA2 presence tended to be distributed more remote from the equator compared to those with LTIA2 absence.LTIA2 duplicated from LTIA1 at the early stage of divergence of the AA genome Oryza species but deleted againin O.nivara.In cultivated rice,absence of LTIA2 is derived from O.nivara.LTIA1 absence occurred more recently in japonica.展开更多
Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
文摘Rice is the main food of Sierra Leoneans and an important source of employment and income for rural communities. According to the West African Rice Development Association report, annual consumption of rice is amongst the highest in SubSaharan Africa(SSA), 104 kg. Mainly, small scale farmers who are resource poor on both the upland and various lowlands grow rice. Sierra Leone has not been able to produce enough rice to meet its local consumption demand for a very long time now. 530 000 MT of milled rice is the required consumption need of the Sierra Leonean population per annum. In 2007, national paddy rice production was projected at 638 000 MT. The level of rice self-sufficiency rose from 50.57% in 2002 to 62.15% in 2006 and then to 63.49% in 2007. The remainder must be imported at increasingly expensive prices in the current situation of high food prices, which includes rice. The price of rice has seen a steady increase in the entire country. What most affected by this, is the low-income urban and peri-urban households. The promotion of domestic rice production is therefore a key element in the strategies for improving rice self-sufficiency, stimulating economic growth and increasing rural income. Therefore, supporting rice production programme is the only solution to pull the country out of the worsening rice situation and maintain the present trend in rice self-sufficiency. Therefore, having an understanding of the strategic interventions in rice production in Sierra Leone is an important ingredient in the promotion and attainment of rice self-sufficiency.
基金Supported by Foreign Aid Funds of Ministry of CommerceAid East Timor Agricultural Technology of Hybrid Rice Cooperation Project~~
文摘The status, advantages and disadvantages of rice production in East Timor were investigated and analyzed, the results of comparison test and demonstrative cultivation through introducing 15 Chinese hybrid rice combinations into East Timor were summarized, the feasibility of developing hybrid rice in East Timor to realize food self-sufficiency were discussed and demonstrated, and the main corresponding technical strategies were proposed in this paper.
文摘The stochastic production function estimates of rice and maize in Senegal River Valley demonstrate the possibility to reach self-sufficiency of rice in Senegal. Nonetheless, its fulfillment requires many accompanying measures in rice and maize production. These measures include all upstream and downstream activities related to agricultural production for their efficiency and sustainability in rice and maize production to maintain the country's comparative advantages and competitiveness. Then priorities should be given to agricultural infrastructure building, establishment of credit markets, and providing an easy access of production factors (e.g., improved land, fertilizers, improved and certified seeds, as well as agricultural machines). Furthermore, policy makers should provide a larger incentive in terms of producer price to encourage farmers to increase considerably their outputs, thereby farmers face smaller risk of having non-sold outputs. And during an early harvesting period, appropriate policy measures are in need to prevent farmers from dumping their products under severe social and economic pressures such as children schooling and loan payment, etc
文摘A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.
文摘This paper seeks to explore the role of Remote Sensing in solving the agriculture related problems, which are the basic issues of sustainable development.
文摘Renewable energy sources, including bioenergy, are presently attracting considerable attention as possible substitutes for fossil fuels. Among the various sources of bioenergy, biomass can arguably play a significant role in the reduction of greenhouse gases and the provision of a stable energy supply. However, the use of fossil fuels continues in the production of bioenergy. Consequently, the overall extent to which biomass utilization for energy can reduce carbon dioxide emissions as a substitute for fossil fuels and whether this can improve the energy self-sufficiency rate remains largely unknown. This study responds to these questions using a case of a Japanese rural community using firewood for residential heating. The results showed that woody biomass utilization for energy is able to both reduce the dependence on fossil fuels and mitigate climate change. These findings offer new insights into the development of sustainability in rural communities.
基金supported by the National Nature Science Foundation of China,the National Key Research and Development Program of China(302001109,2016YFD0300508,2017YFD0301602,2018YFD0301105)the Fujian and Taiwan Cultivation Resources Development and Green Cultivation Coordination Innovation Center,China(Fujian 2011 Project,2015-75)the Natural Science Foundation of Fujian Province,China(2022J01142)。
文摘Agronomic measures are the key to promote the sustainable development of ratoon rice by reducing the damage from mechanical crushing to the residual stubble of the main crop, thereby mitigating the impact on axillary bud sprouting and yield formation in ratoon rice. This study used widely recommended conventional rice Jiafuzhan and hybrid rice Yongyou 2640 as the test materials to conduct a four-factor block design field experiment in a greenhouse of the experimental farm of Fujian Agricultural and Forestry University, China from 2018 to 2019.The treatments included fertilization and no fertilization, alternate wetting and drying irrigation and continuous water flooding irrigation, and plots with and without artificial crushing damage on the rice stubble. At the same time, a 13C stable isotope in-situ detection technology was used to fertilize the pot experiment. The results showed significant interactions among varieties, water management, nitrogen application and stubble status.Relative to the long-term water flooding treatment, the treatment with sequential application of nitrogen fertilizer coupled with moderate field drought for root-vigor and tiller promotion before and after harvesting of the main crop, significantly improved the effective tillers from low position nodes. This in turn increased the effective panicles per plant and grains per panicle by reducing the influence of artificial crushing damage on rice stubble and achieving a high yield of the regenerated rice. Furthermore, the partitioning of 13C assimilates to the residual stubble and its axillary buds were significantly improved at the mature stage of the main crop, while the translocation rate to roots and rhizosphere soil was reduced at the later growth stage of ratooning season rice. This was triggered by the metabolism of hormones and polyamines at the stem base regulated by the interaction of water and fertilizer at this time. We therefore suggest that to achieve a high yield of ratoon rice with low stubble height under mechanized harvesting, the timely application of nitrogen fertilizer is fundamental,coupled with moderate field drying for root-vigor preservation and tiller promotion before and after the mechanical harvesting of the main crop.
文摘Most Japanese are enjoying rich and convenient dietary habits nowadays. However, majorities of Japanese are feeling anxiety about the future food supply because Japan's food self-sufficiency ratio has fallen most rapidly in the last 45 years, and is lowest amongst countries with a population of more than 100 million. Major causes and mechanisms of the decline in the food self-sufficiency ratio over the last 45 years were analyzed. Drastic changes of dietary habits under rapid economic growth and sharp appreciation of the yen against the US dollar were found to be the major causes of the sharp decline of the food self-sufficiency ratio. Preliminary projections about the food self-sufficiency ratio in 2015 were carried out, and it was found that it will not be easy to achieve the policy goal of raising the food self-sufficiency ratio to 45% by 2015.
基金supported by the National Natural Science Foundation of China(42271360 and 42271399)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST)(2020QNRC001)the Fundamental Research Funds for the Central Universities,China(2662021JC013,CCNU22QN018)。
文摘Ratoon rice,which refers to a second harvest of rice obtained from the regenerated tillers originating from the stubble of the first harvested crop,plays an important role in both food security and agroecology while requiring minimal agricultural inputs.However,accurately identifying ratoon rice crops is challenging due to the similarity of its spectral features with other rice cropping systems(e.g.,double rice).Moreover,images with a high spatiotemporal resolution are essential since ratoon rice is generally cultivated in fragmented croplands within regions that frequently exhibit cloudy and rainy weather.In this study,taking Qichun County in Hubei Province,China as an example,we developed a new phenology-based ratoon rice vegetation index(PRVI)for the purpose of ratoon rice mapping at a 30 m spatial resolution using a robust time series generated from Harmonized Landsat and Sentinel-2(HLS)images.The PRVI that incorporated the red,near-infrared,and shortwave infrared 1 bands was developed based on the analysis of spectro-phenological separability and feature selection.Based on actual field samples,the performance of the PRVI for ratoon rice mapping was carefully evaluated by comparing it to several vegetation indices,including normalized difference vegetation index(NDVI),enhanced vegetation index(EVI)and land surface water index(LSWI).The results suggested that the PRVI could sufficiently capture the specific characteristics of ratoon rice,leading to a favorable separability between ratoon rice and other land cover types.Furthermore,the PRVI showed the best performance for identifying ratoon rice in the phenological phases characterized by grain filling and harvesting to tillering of the ratoon crop(GHS-TS2),indicating that only several images are required to obtain an accurate ratoon rice map.Finally,the PRVI performed better than NDVI,EVI,LSWI and their combination at the GHS-TS2 stages,with producer's accuracy and user's accuracy of 92.22 and 89.30%,respectively.These results demonstrate that the proposed PRVI based on HLS data can effectively identify ratoon rice in fragmented croplands at crucial phenological stages,which is promising for identifying the earliest timing of ratoon rice planting and can provide a fundamental dataset for crop management activities.
基金This project was financially supported by the National Natural Science Foundation of China(31601244 and 31971843)the Guangdong Provincial Key Field Research and Development Plan Project,China(2019B020221003)the Modern Agricultural Industrial Technology System of Guangdong Province,China(2020KJ105).
文摘Fragrant rice has a high market value,and it is a popular rice type among consumers owing to its pleasant flavor.Plantation methods,nitrogen(N)fertilizers,and silicon(Si)fertilizers can affect the grain yield and fragrance of fragrant rice.However,the core commercial rice production attributes,namely the head rice yield(HRY)and 2-acetyl-1-pyrroline(2-AP)content of fragrant rice,under various nitrogen and silicon(N-Si)fertilization levels and different plantation methods remain unknown.The field experiment in this study was performed in the early seasons of 2018 and 2019 with two popular indica fragrant rice cultivars(Yuxiangyouzhan and Xiangyaxiangzhan).They were grown under six N-Si fertilization treatments(combinations of two levels of Si fertilizer,0 kg Si ha^(−1)(Si0)and 150 kg Si ha^(−1)(Si1),and three levels of N fertilizer,0 kg N ha^(−1)(N0),150 kg N ha^(−1)(N1),and 220 kg N ha^(−1)(N2))and three plantation methods(artificial transplanting(AT),mechanical transplanting(MT),and mechanical direct-seeding(MD)).The results showed that the N-Si fertilization treatments and all the plantation methods significantly affected the HRY and 2-AP content and related parameters of the two different fragrant rice cultivars.Compared with the Si0N0 treatment,the N-Si fertilization treatments resulted in higher HRY and 2-AP contents.The rates of brown rice,milled rice,head rice,and chalky rice of the fragrant rice also improved with the N-Si fertilization treatments.The N-Si fertilization treatments increased the activities of N metabolism enzymes and the accumulation of N and Si in various parts of the fragrant rice,and affected their antioxidant response parameters.The key parameters for the HRY and 2-AP content were assessed by redundancy analysis.Furthermore,the structural equation model revealed that the Si and N accumulation levels indirectly affected the HRY by affecting the N metabolism enzyme activity,N use efficiency,and grain quality of fragrant rice.Moreover,high N and Si accumulation directly promoted the 2-AP content or affected the antioxidant response parameters and indirectly regulated 2-AP synthesis.The interactions of the MT method with the N-Si fertilization treatments varied in the fragrant rice cultivars in terms of the HRY and 2-AP content,whereas the MD method was beneficial to the 2-AP content in both fragrant rice cultivars under the N-Si fertilization treatments.
文摘We investigate the weight-based food self-sufficiency ratio (WSSR) for Japan over a 50-year period (1961-2011) by applying factorial component analysis technique in order to measure the changes of the WSSR quantitatively. Quantitative data analysis is employed to determine the drivers of those changes. Numerical results show that Japan experienced a drastic decline in its food self-sufficiency ratio (FSSR) during the above period. The factorial component analysis shows that such a decline was caused by the changes in the FSSR of the food groups/items, not in the quantity of the food supply. A number of characteristics of those changes are presented and a list of major food groups that have major impacts on the changes is constructed. The findings in this paper reiterate the alarming food security problem in Japan and provide clear insight into the causes of this problem. The findings in this study pick up where previous studies have left off, aid the food-related policy-making process and identify new ideas for future food research.
基金supported by the National Key Research and Development Program of China(2021YFD2100902-3)the National Natural Science Foundation of China(32072258)+5 种基金Major Science and Technology Program of Heilongjiang(2020ZX08B02)Harbin University of Commerce“Young Innovative Talents”Support Program(2019CX062020CX262020CX27)the Central Financial Support for the Development of Local Colleges and Universities,Graduate Innovation Research Project of Harbin University of Commerce(YJSCX2021-698HSD)Training plan of Young Innovative Talents in Universities of Heilongjiang(UNPYSCT-2020218).
文摘The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application.
基金This research was supported by the National Natural Science Foundation of China(32061143034,32161143028)Tibet Regional Science and Technology Collaborative Innovation Project(QYXTZX-NQ2021-01)Fundamental Research Funds for the Central Universities(lzujbky-2022-ct04).
文摘Background Providing high-quality roughage is crucial for improvement of ruminant production because it is an essential component of their feed.Our previous study showed that feeding bio-fermented rice straw(BF)improved the feed intake and weight gain of sheep.However,it remains unclear why feeding BF to sheep increased their feed intake and weight gain.Therefore,the purposes of this research were to investigate how the rumen micro-biota and serum metabolome are dynamically changing after feeding BF,as well as how their changes influence the feed intake,digestibility,nutrient transport,meat quality and growth performances of sheep.Twelve growing Hu sheep were allocated into 3 groups:alfalfa hay fed group(AH:positive control),rice straw fed group(RS:negative control)and BF fed group(BF:treatment).Samples of rumen content,blood,rumen epithelium,muscle,feed offered and refusals were collected for the subsequent analysis.Results Feeding BF changed the microbial community and rumen fermentation,particularly increasing(P<0.05)relative abundance of Prevotella and propionate production,and decreasing(P<0.05)enteric methane yield.The histomorphology(height,width,area and thickness)of rumen papillae and gene expression for carbohydrate trans-port(MCT1),tight junction(claudin-1,claudin-4),and cell proliferation(CDK4,Cyclin A2,Cyclin E1)were improved(P<0.05)in sheep fed BF.Additionally,serum metabolome was also dynamically changed,which led to up-regulating(P<0.05)the primary bile acid biosynthesis and biosynthesis of unsaturated fatty acid in sheep fed BF.As a result,the higher(P<0.05)feed intake,digestibility,growth rate,feed efficiency,meat quality and mono-unsaturated fatty acid concentration in muscle,and the lower(P<0.05)feed cost per kg of live weight were achieved by feeding BF.Conclusions Feeding BF improved the growth performances and meat quality of sheep and reduced their feed cost.Therefore,bio-fermentation of rice straw could be an innovative way for improving ruminant production with mini-mizing production costs.
基金financially supported by the National Natural Science Foundation of China (42207032,52070064)the Key Project of National Natural Science Foundation of China (42330705)+2 种基金Key R&D Project of Hebei Province (21373601D)Advanced Talents Incubation Program of the Hebei University (521100222012)economic support from Collaborative Innovation Center for Baiyangdian Basin Ecological Protection and Beijing-Tianjin-Hebei Sustainable Development and Institute of Life Sciences and Green Development of Hebei University。
文摘Soil salinity seriously affects the utilization of farmland and threatens the crop production.Here,a selenium-nitrogen-co-doped carbon dots was developed,which increased rice seedling growth and alleviated its inhibition by salt stress by foliar spraying.The treatment activated Ca^(2+)and jasmonic acid signaling pathways and increased iron homeostasis,antioxidant defense,and cell wall development of rice seedlings.It could be used to increase crop resistance to environmental stress.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金supported by the National Natural Science Foundation of China (31971826,U20A2025)Natural Science Foundation of Heilongjiang province (JQ2021C002)the College Student Innovation and Entrepreneurship Program Training Program (202210223055)。
文摘Plant Homeo Domain(PHD)proteins are involved in diverse biological processes during plant growth.However,the regulation of PHD genes on rice cold stress response remains largely unknown.Here,we reported that PHD17 negatively regulated cold tolerance in rice seedlings as a cleavage target of miR1320.PHD17 expression was greatly induced by cold stress,and was down-regulated by miR1320 overexpression and up-regulated by miR1320 knockdown.Through 5'RACE and dual luciferase assays,we found that miR1320 targeted and cleaved the 3'UTR region of PHD17.PHD17 was a nuclearlocalized protein and acted as a transcriptional activator in yeast.PHD17 overexpression reduced cold tolerance of rice seedlings,while knockout of PHD17 increased cold tolerance,partially via the CBF cold signaling.By combining transcriptomic and physiological analyses,we demonstrated that PHD17 modulated ROS homeostasis and flavonoid accumulation under cold stress.K-means clustering analysis revealed that differentially expressed genes in PHD17 transgenic lines were significantly enriched in the jasmonic acid(JA)biosynthesis pathway,and expression of JA biosynthesis and signaling genes was verified to be affected by PHD17.Cold stress tests applied with MeJA or IBU(JA synthesis inhibitor)further suggested the involvement of PHD17 in JA-mediated cold signaling.Taken together,our results suggest that PHD17 acts downstream of miR1320 and negatively regulates cold tolerance of rice seedlings through JA-mediated signaling pathway.
基金supported by grants from the National Natural Science Foundation of China(U20A2025,32101672,31971826)the National Key Research and Development Plan of China(2021YFF1001100)+2 种基金Natural Science Foundation of Heilongjiang province(YQ2023C035)Double First-class Innovation Achievement Program of Heilongjiang Province(LJGXCG2023-072)the Graduate Student Scientific Research Innovation Projects of Heilongjiang Bayi Agricultural University(YJSCX2022-Z01)。
文摘Low temperature causes rice yield losses of up to 30%–40%,therefore increasing its cold tolerance is a breeding target.Few genes in rice are reported to confer cold tolerance at both the vegetative and reproductive stages.This study revealed a rice-specific 24-nt miRNA,miR1868,whose accumulation was suppressed by cold stress.Knockdown of MIR1868 increased seedling survival,pollen fertility,seed setting,and grain yield under cold stress,whereas its overexpression conferred the opposite phenotype.Knockdown of MIR1868 increased reactive oxygen species(ROS)scavenging and soluble sugar content under cold stress by increasing the expression of peroxidase genes and sugar metabolism genes,and its overexpression produced the opposite effect.Thus,MIR1868 negatively regulated rice cold tolerance via ROS scavenging and sugar accumulation.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by Zhejiang Provincial Natural Science Foundation of China (LD24C130002)Scientific Research Foundation of China Jiliang University。
文摘A rice low temperature-induced albino variant was determined by the recessive ltia1 and ltia2 genes.LTIA1 and LTIA2 encode highly conserved mini-ribonucleasesⅢlocated in chloroplasts and expressed in aerial parts of the plant.At low temperature,LTIA1 and LTIA2 redundantly affect chlorophyll levels,non-photochemical quenching,photosynthetic quantum yield of PSⅡand seedling growth.LTIA1 and LTIA2 proteins are involved in splicing of atp F and the biogenesis of 16S and 23S rRNA in chloroplasts.Presence/absence variation of LTIA1,the ancestral copy,was found only in japonica but that of LTIA2 in all rice subgroups.Accessions with LTIA2 presence tended to be distributed more remote from the equator compared to those with LTIA2 absence.LTIA2 duplicated from LTIA1 at the early stage of divergence of the AA genome Oryza species but deleted againin O.nivara.In cultivated rice,absence of LTIA2 is derived from O.nivara.LTIA1 absence occurred more recently in japonica.
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.