Two mutants with rolled leaves, temporally designated as rl3(t)-I and rl3(t)-2, were served for exploring the mechanism underlying the rolled leaf characteristic. Except for having typical rolled leaves, the plant...Two mutants with rolled leaves, temporally designated as rl3(t)-I and rl3(t)-2, were served for exploring the mechanism underlying the rolled leaf characteristic. Except for having typical rolled leaves, the plant heights and panicle lengths of rl3(t)-1 and rl3(t)-2 significantly decreased, and the seed-setting rate also decreased when compared with wild type 93-11. Cytological analysis suggested that the rolled leaf phenotype might be caused by the changes of number and size of bulliform cells. Genetic analysis indicated rl3(t)-1 is allelic to rl3(t)-2, and controlled by a recessive gene. Gene mapping result indicated that RL3(t) gene resided in a 46-kb long region governed by the sequence tag site markers S3-39 and S3-36 on rice chromosome 3. The result provides an important clue for further cloning the RL3(t) and understanding the mechanism of rice leaf development.展开更多
Excavating single nucleotide polymorphisms (SNPs) significantly associated with rice grain shape and predicting candidate genes through genome-wide association study (GWAS) can provide a theoretical basis for discover...Excavating single nucleotide polymorphisms (SNPs) significantly associated with rice grain shape and predicting candidate genes through genome-wide association study (GWAS) can provide a theoretical basis for discovery and utilization of excellent genetic resources in rice. Based on 16 352 SNPs, 161 natural indica rice varieties with various grain sizes in southern China were used for GWAS of grain shape-related traits, referring to grain length (GL), grain width (GW), 1000-grain weight (TGW), and grain length/width (GLW). Phenotypic statistics showed that coefficient of variation values for these four traits GL, GW, TGW and GLW were 9.92%, 9.09%, 20.20% and 16.38%, respectively. Each trait showed a normal distribution, and there was a certain correlation between these traits. Through general linear model correlation analysis, a total of 38 significant loci were identified, and a range of 100 kb upstream and downstream of the significant loci was identified as the candidate interval. On chromosome 3, GS3 and qGL3 were found to regulate GL. On chromosome 6, TGW6 and GW6a were found to regulate TGW. Also, some QTLs related to grain shape were found on chromosomes 5 and 9. Besides that, using sequenced 3K-germplasm resources, we found that there are 22 overlapped varieties between these two natural populations. Twenty-six SNPs and fourteen haplotypes were identified in five regions of GS3 genes. The detection of multiple candidate genes/QTLs within the candidate interval is beneficial for further excavation of superior rice genetic resources.展开更多
To understand the responses of flag leaf shape in rice to elevated CO2 environment and their genetic characteristics, quantitative trait loci (QTLs) for flag leaf shape in rice were mapped onto the molecular marker ...To understand the responses of flag leaf shape in rice to elevated CO2 environment and their genetic characteristics, quantitative trait loci (QTLs) for flag leaf shape in rice were mapped onto the molecular marker linkage map of chromosome segment substitution lines (CSSLs) derived from a cross between a japonica variety Asominori and an indica variety IR24 under free air carbon dioxide enrichment (FACE, 200 μmol/mol above current levels) and current CO2 concentration (Ambient, about 370 μmol/mol). Three flag-leaf traits, flag-leaf length (LL), width (LW) and the ratio of LL to LW (RLW), were estimated for each CSSL and their parental varieties. The differences in LL, LW and RLW between parents and in LL and LW within IR24 between FACE and Ambient were significant at 1% level. The continuous distributions and transgressive segregations of LL, LW and RLW were also observed in CSSL population, showing that the three traits were quantitatively inherited under both FACE and Ambient. A total of 16 QTLs for the three traits were detected on chromosomes 1, 2, 3, 4, 6, 8 and 11 with LOD (Log10-1ikelihood ratio) scores ranging from 3.0 to 6.7. Among them, four QTLs (qLL-6*, qLL-8* qLW-4* and qRLW-6*) were commonly detected under both FACE and Ambient. Therefore, based on the different responses to elevated CO2 in comparison with current CO2 level, it can be suggested that the expressions of several QTLs associated with flag-leaf shape in rice could be induced by the high CO2 level.展开更多
Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and widt...Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and width in rice. The GS2 allele in the big-grain rice line ‘CDL’functioned in a dominant manner. In the present study, we employed a chromosome walking strategy in the residual heterozygous lines from recombinant inbred population between cultivar 'R1126' and CDL, and located the GS2 gene in an interval of ~33.2 kb flanked by marker GL2-35-1 and GL2-12 in the long arm of rice chromosome 2. According to genome annotations, three putative gene loci, LOC_Os02g47280, LOC_Os02g47290 and LOC_Os02g47300, exist in this candidate region. In addition, allelic analysis with previously reported genes demonstrated that GS2 was novel for regulating rice grain shape. These results will help promote the cloning and functional characterization of the GS2 gene and further develop linked markers to be used in marker-assisted breeding.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant No. 31171158)the Ministry of Science and Technology (Grant No. 2011ZX08009-003-005)+2 种基金the Natural Science Foundation of Jiangsu Province (Grant No. BK2012684)the Six Talent Peaks in Jiangsu Provincethe Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Two mutants with rolled leaves, temporally designated as rl3(t)-I and rl3(t)-2, were served for exploring the mechanism underlying the rolled leaf characteristic. Except for having typical rolled leaves, the plant heights and panicle lengths of rl3(t)-1 and rl3(t)-2 significantly decreased, and the seed-setting rate also decreased when compared with wild type 93-11. Cytological analysis suggested that the rolled leaf phenotype might be caused by the changes of number and size of bulliform cells. Genetic analysis indicated rl3(t)-1 is allelic to rl3(t)-2, and controlled by a recessive gene. Gene mapping result indicated that RL3(t) gene resided in a 46-kb long region governed by the sequence tag site markers S3-39 and S3-36 on rice chromosome 3. The result provides an important clue for further cloning the RL3(t) and understanding the mechanism of rice leaf development.
基金supported by the Natural Science Foundation of China(Grant Nos.31461143014,31771778 and 31801336)the National Key Research and Development Program of China(Grant No.2016YFD0100902-07)+1 种基金the China Postdoctoral Science Foundation(Grant No.2018M641556)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LGN19C130006)
文摘Excavating single nucleotide polymorphisms (SNPs) significantly associated with rice grain shape and predicting candidate genes through genome-wide association study (GWAS) can provide a theoretical basis for discovery and utilization of excellent genetic resources in rice. Based on 16 352 SNPs, 161 natural indica rice varieties with various grain sizes in southern China were used for GWAS of grain shape-related traits, referring to grain length (GL), grain width (GW), 1000-grain weight (TGW), and grain length/width (GLW). Phenotypic statistics showed that coefficient of variation values for these four traits GL, GW, TGW and GLW were 9.92%, 9.09%, 20.20% and 16.38%, respectively. Each trait showed a normal distribution, and there was a certain correlation between these traits. Through general linear model correlation analysis, a total of 38 significant loci were identified, and a range of 100 kb upstream and downstream of the significant loci was identified as the candidate interval. On chromosome 3, GS3 and qGL3 were found to regulate GL. On chromosome 6, TGW6 and GW6a were found to regulate TGW. Also, some QTLs related to grain shape were found on chromosomes 5 and 9. Besides that, using sequenced 3K-germplasm resources, we found that there are 22 overlapped varieties between these two natural populations. Twenty-six SNPs and fourteen haplotypes were identified in five regions of GS3 genes. The detection of multiple candidate genes/QTLs within the candidate interval is beneficial for further excavation of superior rice genetic resources.
基金The study was supported by the National Natural Science Foundation, China (Grant Nos. 30270800 and 40231003)
文摘To understand the responses of flag leaf shape in rice to elevated CO2 environment and their genetic characteristics, quantitative trait loci (QTLs) for flag leaf shape in rice were mapped onto the molecular marker linkage map of chromosome segment substitution lines (CSSLs) derived from a cross between a japonica variety Asominori and an indica variety IR24 under free air carbon dioxide enrichment (FACE, 200 μmol/mol above current levels) and current CO2 concentration (Ambient, about 370 μmol/mol). Three flag-leaf traits, flag-leaf length (LL), width (LW) and the ratio of LL to LW (RLW), were estimated for each CSSL and their parental varieties. The differences in LL, LW and RLW between parents and in LL and LW within IR24 between FACE and Ambient were significant at 1% level. The continuous distributions and transgressive segregations of LL, LW and RLW were also observed in CSSL population, showing that the three traits were quantitatively inherited under both FACE and Ambient. A total of 16 QTLs for the three traits were detected on chromosomes 1, 2, 3, 4, 6, 8 and 11 with LOD (Log10-1ikelihood ratio) scores ranging from 3.0 to 6.7. Among them, four QTLs (qLL-6*, qLL-8* qLW-4* and qRLW-6*) were commonly detected under both FACE and Ambient. Therefore, based on the different responses to elevated CO2 in comparison with current CO2 level, it can be suggested that the expressions of several QTLs associated with flag-leaf shape in rice could be induced by the high CO2 level.
基金supported by the National High Technology Research and Development Program of China (2011AA10A101)the Hunan Provincial Natural Science Foundation of China (10JJ2025)
文摘Grain shape as a major determinant of rice yield and quality is widely believed to be controlled by quantitative trait loci(QTL). We have identified a novel gene 'GS2' to largely regulate grain length and width in rice. The GS2 allele in the big-grain rice line ‘CDL’functioned in a dominant manner. In the present study, we employed a chromosome walking strategy in the residual heterozygous lines from recombinant inbred population between cultivar 'R1126' and CDL, and located the GS2 gene in an interval of ~33.2 kb flanked by marker GL2-35-1 and GL2-12 in the long arm of rice chromosome 2. According to genome annotations, three putative gene loci, LOC_Os02g47280, LOC_Os02g47290 and LOC_Os02g47300, exist in this candidate region. In addition, allelic analysis with previously reported genes demonstrated that GS2 was novel for regulating rice grain shape. These results will help promote the cloning and functional characterization of the GS2 gene and further develop linked markers to be used in marker-assisted breeding.