Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging a...Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging and yield,and their relationships with root traits.In this study,field experiments were conducted during 2012 and 2013 using two super rice varieties(hybrid rice Peizataifeng and inbred rice Yuxiangyouzhan)under three furrow establishment treatments(T1,both water and seed furrows were established by the machine;T2,only seed furrows were established by the machine;and T3,neither water nor seed furrows were established by the machine).Lodging index,lodging-related traits,grain yield,above-ground dry weight and root traits were measured.The results showed that the lodging index was significantly affected by the treatments with furrows(T1 and T2).The strongest lodging resistance was detected in the mechanical hill wet-seeded rice with furrow treatment(T1)in both 2012 and 2013.Lodging resistance was strongly related to the breaking resistance.No significant difference was found in grain yield or dry weight of the mechanical hill wet-seeded rice.Therefore,the mechanical hill wet-seeded rice with furrow treatment increased rice lodging resistance,which was related to root traits.展开更多
Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bot...Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.展开更多
Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in a...Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.展开更多
To solve the problem of poor sowing quality due to loose soil in wheat seedbed after land preparation in the Huang-Huaihai region of China,a double compression seeder for pre-sowing and seed furrow of wheat in wide-se...To solve the problem of poor sowing quality due to loose soil in wheat seedbed after land preparation in the Huang-Huaihai region of China,a double compression seeder for pre-sowing and seed furrow of wheat in wide-seedling belts was designed.The machine sowing operation was divided into two processes:pre-sowing compression and seed ditch compression,pre-sowing compression was carried out homogenization of the pre-sowing seed bed that the tractor wheel has crushed,and the seed ditch compression compresses the seeds and soil in the seed ditch,so that the seeds were embedded in the seed ditch soil.By analyzing the kinematics of the pre-planting compression device and the spiral blade in the process of soil levelling and compression,the structure of the equal-difference variable-diameter equal-pitch spiral conveying winch was designed,and the key parameters of the drum spiral blade were determined,and then the height of the spiral blades,the rutting distance and the speed of the compression roller were taken as the test factors,and the soil flatness was used as the index to carry out the discrete element simulation test.The simulation results show that when the spiral blade was 4.85 cm,the rut distance was 37.4 cm,and the rotation speed was 327.16 r/min,the optimal land flatness was 0.18.Finally,field experiments were carried out on the seeder,and the results showed that:the soil bulk density after operation was 22.7%greater than that before sowing(p<0.01),and the soil flatness was 1.9 cm,which was consistent with the simulated results.The use of pre-sowing compression and seed furrow compression methods improved the soil environment of the seed bed,increased the uniformity of the seeding depth,and promoted the root growth of wheat.This study provides equipment support and technical reference for agricultural production in wheat-corn rotation areas in the Huang-Huaihai region of China.展开更多
In order to solve the serious problems of seeds are covered by residual film and overhead by straw during no-till seeding,a seed furrow cleaning device for no-till maize seeding was developed,which adopted a collabora...In order to solve the serious problems of seeds are covered by residual film and overhead by straw during no-till seeding,a seed furrow cleaning device for no-till maize seeding was developed,which adopted a collaborative cleaning method of rotating spring teeth and curved sliding shovel.The movement process and motion trajectory of throwing residual film and straw were constructed.The maximum distance of throwing to one side in horizontal and maximum height in vertical were obtained.The motion trajectory of adjacent spring teeth was analyzed by Matlab,the motion trajectories of adjacent spring teeth at different speeds of 120 r/min,150 r/min and 180 r/min were achieved,the theoretical analysis results showed that the area of omitted area decreased with the increase of rotation speed.Based on theoretical and simulation analysis of critical parameters,the forward speed of machine,rotation speed of spring teeth,and dip angle between spring teeth and rotary disc were selected as the influencing factor.Straw cleaning rate(SCR)and residual film cleaning rate(RFCR)were selected as the response values for three factors and three levels of orthogonal experiment design.The optimal combination of the selected parameters was obtained,and the field test verification was also conducted.The results showed that the rotation speed of spring teeth,forward speed and dip angle of spring teeth significantly affect SCR and RFCR were in decreasing order.The field test results indicated that when forward speed was 6 km/h,rotation speed of spring teeth was 180 r/min and dip angle of spring teeth was 40°,SCR and RFCR were 88.27%and 84.31%,respectively.This study provides a reference for the development of no-till seeder in Xinjiang and the northwestern regions of China.展开更多
基金the Guangdong Basic and Applied Basic Research Foundation(Grant No.2020B1515020034)the National Postdoctoral Program for Innovative Talents(Grant No.BX201700083)+3 种基金the Commonweal Project(Grant No.201203059)the Key Research and Development Program of Guangdong(Grant No.2019B020221003)the National Key Research and Development Program of China(Grant No.2018YFD0100800)as well as the China Agriculture Research System(Grant No.CARS-01-41).
文摘Mechanical hill wet-seeded rice machine is beneficial for establishing and growing uniform rows of seedlings.However,there is limited knowledge regarding the effects of the establishment of furrows on growth,lodging and yield,and their relationships with root traits.In this study,field experiments were conducted during 2012 and 2013 using two super rice varieties(hybrid rice Peizataifeng and inbred rice Yuxiangyouzhan)under three furrow establishment treatments(T1,both water and seed furrows were established by the machine;T2,only seed furrows were established by the machine;and T3,neither water nor seed furrows were established by the machine).Lodging index,lodging-related traits,grain yield,above-ground dry weight and root traits were measured.The results showed that the lodging index was significantly affected by the treatments with furrows(T1 and T2).The strongest lodging resistance was detected in the mechanical hill wet-seeded rice with furrow treatment(T1)in both 2012 and 2013.Lodging resistance was strongly related to the breaking resistance.No significant difference was found in grain yield or dry weight of the mechanical hill wet-seeded rice.Therefore,the mechanical hill wet-seeded rice with furrow treatment increased rice lodging resistance,which was related to root traits.
基金grants from the National Natural Science Foundation of China (51222905, 51321001, 51439006)the National High-Tech R&D Program of China (863 Program, 2011AA100505)+1 种基金the Ministry of Water Resources of China (201201003)the Program for New Century Excellent Talents in University, Ministry of Education, China (NCET11-0479)
文摘Maize is widely planted throughout the world and has the highest yield of all the cereal crops. The arid region of North- west China has become the largest base for seed-maize production, but water shortage is the bottleneck for its long-term sustainability. Investigating the transpiration of seed-maize plants will offer valuable information for suitable planting and irrigation strategies in this arid area. In this study, stem flow was measured using a heat balance method under alternate furrow irrigation and double-row ridge planting. Meteorological factors, soil water content (e), soil temperature (Ts) and leaf area (LA) were also monitored during 2012 and 2013. The diurnal stem flow and seasonal dynamics of maize plants in the zones of south side female parent (SFP), north side female parent (NFP) and male parent (MP) were investigated. The order of stem flow rate was: SFP〉MP〉NFP. The relationships between stem flow and influential factors during three growth stages at different time scales were analyzed. On an hourly scale, solar radiation (Rs) was the main driving factor of stem flow. The influence of air temperature (Ta) during the maturity stage was significantly higher than in other periods. On a daily scale, Rs was the main driving factor of stem flow during the heading stage. During the filling growth stage, the main driving factor of NFP and MP stem flow was RH and Ts, respectively. However, during the maturity stage, the environ- mental factors had no significant influence on seed-maize stem flow. For different seed-maize plants, the main influential factors were different in each of the three growing seasons. Therefore, we identified them to accurately model the FP and MP stem flow and applied precision irrigation under alternate partial root-zone furrow irrigation to analyze major factors affecting stem flow in different scales.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201503105 and 201503125)the National High-Tech R&D Program of China(863 Program,2011AA100504)
文摘Ridge-furrow rainwater harvesting (RFRH) planting pattern can lessen the effect of water deficits throughout all crop growth stages, but water shortage would remain unavoidable during some stages of crop growth in arid and semiarid areas. Supplemental irrigation would still be needed to achieve a higher production. Field experiments were conducted for two growing seasons (2012-2013 and 2013-2014)to determine an appropriate amount of supplemental irrigation to be applied to winter oilseed rape at the stem-elongation stage with RFRH planting pattern. Four treatments, including supplemental irrigation amount of 0 (I1), 60 mm (I2) and 120 mm (I3) with RFRH planting pattern and a control (CK) irrigated with 120 mm with flat planting pattern, were set up to evaluate the effects of supplemental irrigation on aboveground dry matter (ADM), nitrogen nutrition index (NNI), radiation use efficiency (RUE), water use efficiency (WUE), and seed yield and oil content of the oilseed rape. Results showed that supplemental irrigation improved NNI, RUE, seed yield and oil content, and WUE. However, the NNI, RUE, seed yield and oil content, and WUE did not increase significantly or even showed a downward trend with excessive irrigation. Seed yield was the highest in 13 for both growing seasons. Seed yield and WUE in 13 averaged 3235 kg ha^-1 and 8.85 kg ha^-1 mm-1, respectively. The highest WUE was occurred in 12 for both growing seasons. Seed yield and WUE in 12 averaged 3089 kg ha^-1 and 9.63 kg ha^-1 mm^-1, respectively. Compared to 13, 12 used 60 mm less irrigation amount, had an 8.9% higher WUE, but only 4.5 and 0.4% lower seed yield and oil content, respectively. 12 saved water without substantially sacrificing yield or oil content, so it is recommended as an appropriate cultivation and irrigation schedule for winter oilseed rape at the stem-elongation stage.
基金supported by Henan Province Science and Technology Project(Grant No.232102110271)China Agriculture Research System(Grant No.CARS-03-44).
文摘To solve the problem of poor sowing quality due to loose soil in wheat seedbed after land preparation in the Huang-Huaihai region of China,a double compression seeder for pre-sowing and seed furrow of wheat in wide-seedling belts was designed.The machine sowing operation was divided into two processes:pre-sowing compression and seed ditch compression,pre-sowing compression was carried out homogenization of the pre-sowing seed bed that the tractor wheel has crushed,and the seed ditch compression compresses the seeds and soil in the seed ditch,so that the seeds were embedded in the seed ditch soil.By analyzing the kinematics of the pre-planting compression device and the spiral blade in the process of soil levelling and compression,the structure of the equal-difference variable-diameter equal-pitch spiral conveying winch was designed,and the key parameters of the drum spiral blade were determined,and then the height of the spiral blades,the rutting distance and the speed of the compression roller were taken as the test factors,and the soil flatness was used as the index to carry out the discrete element simulation test.The simulation results show that when the spiral blade was 4.85 cm,the rut distance was 37.4 cm,and the rotation speed was 327.16 r/min,the optimal land flatness was 0.18.Finally,field experiments were carried out on the seeder,and the results showed that:the soil bulk density after operation was 22.7%greater than that before sowing(p<0.01),and the soil flatness was 1.9 cm,which was consistent with the simulated results.The use of pre-sowing compression and seed furrow compression methods improved the soil environment of the seed bed,increased the uniformity of the seeding depth,and promoted the root growth of wheat.This study provides equipment support and technical reference for agricultural production in wheat-corn rotation areas in the Huang-Huaihai region of China.
基金This work was supported by the National Natural Science Foundation of China(Grant No.52165039)Xinjiang Agricultural Machinery R&D,Manufacturing,Promotion,and Application Integration Project(Grant No.YTHSD2022-14)+1 种基金China Agriculture Research System of MOF and MARA(Grant No.CARS-03)Xinjiang Key Laboratory of Intelligent Agricultural Equipment.Gratitude should be expressed to all the members of Conservation Tillage Research Centre.
文摘In order to solve the serious problems of seeds are covered by residual film and overhead by straw during no-till seeding,a seed furrow cleaning device for no-till maize seeding was developed,which adopted a collaborative cleaning method of rotating spring teeth and curved sliding shovel.The movement process and motion trajectory of throwing residual film and straw were constructed.The maximum distance of throwing to one side in horizontal and maximum height in vertical were obtained.The motion trajectory of adjacent spring teeth was analyzed by Matlab,the motion trajectories of adjacent spring teeth at different speeds of 120 r/min,150 r/min and 180 r/min were achieved,the theoretical analysis results showed that the area of omitted area decreased with the increase of rotation speed.Based on theoretical and simulation analysis of critical parameters,the forward speed of machine,rotation speed of spring teeth,and dip angle between spring teeth and rotary disc were selected as the influencing factor.Straw cleaning rate(SCR)and residual film cleaning rate(RFCR)were selected as the response values for three factors and three levels of orthogonal experiment design.The optimal combination of the selected parameters was obtained,and the field test verification was also conducted.The results showed that the rotation speed of spring teeth,forward speed and dip angle of spring teeth significantly affect SCR and RFCR were in decreasing order.The field test results indicated that when forward speed was 6 km/h,rotation speed of spring teeth was 180 r/min and dip angle of spring teeth was 40°,SCR and RFCR were 88.27%and 84.31%,respectively.This study provides a reference for the development of no-till seeder in Xinjiang and the northwestern regions of China.