Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s&...Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ.展开更多
Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjec...Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).展开更多
In this article, Riemann boundary value problem with different factors for polyanalytic functions on the real axis is studied. The expression of solution and sufficient and necessary condition for solvability of the n...In this article, Riemann boundary value problem with different factors for polyanalytic functions on the real axis is studied. The expression of solution and sufficient and necessary condition for solvability of the non-homogeneous Riemann boundary value problem are obtained.展开更多
In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann the...In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.展开更多
This work shows, after a brief introduction to Riemann zeta function , the demonstration that all non-trivial zeros of this function lies on the so-called “critical line”,, the one Hardy demonstrated in his famous w...This work shows, after a brief introduction to Riemann zeta function , the demonstration that all non-trivial zeros of this function lies on the so-called “critical line”,, the one Hardy demonstrated in his famous work that infinite countable zeros of the above function can be found on it. Thus, out of this strip, the only remaining zeros of this function are the so-called “trivial ones” . After an analytical introduction reminding the existence of a germ from a generic zero lying in , we show through a Weierstrass-Hadamard representation approach of the above germ that non-trivial zeros out of cannot be found.展开更多
Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive comput...Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals.展开更多
In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,...In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,we get the solutions of R m(m〉0) Riemann boundary value problems for regular functions.Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions,we obtain the solutions of R m(m〉0) Riemann boundary value problems for harmonic functions and bi-harmonic functions.展开更多
The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in t...The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.展开更多
The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <i...The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <img src="Edit_909dc64a-717a-4477-a9f8-a3b94ab4008e.bmp" alt="" /> for representing the zeta function at the odd integer values 2<em>n</em>+1 for <em>n</em> a positive integer. The above representation shows the zeta function at odd positive integers can be represented in terms of the Euler numbers <em>E</em><sub>2<em>n</em></sub> and the polygamma functions <em>ψ</em><sup>(2<em>n</em>)</sup>(3/4). This is a new result for this study area. For completeness, this paper presents a review of selected properties of the Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. Also as a result of this research, one can obtain a closed form expression for the Dirichlet beta series evaluated at positive even integers. The results presented enable one to construct closed form expressions for the Dirichlet eta, lambda and beta series evaluated at odd and even integers. Closed form expressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are also presented.展开更多
A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppo...A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.展开更多
To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically...To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically on the y-axis with period proportional to inverse step length u0. It is found that they possess additional zeros off the imaginary y-axis and additionally on this axis and vanish in the limiting case u0 → 0 in complex infinity. There remain then only the “genuine” zeros for Xi functions to continuous Omega functions which we call “analytic zeros” and which lie on the imaginary axis. After a short repetition of the Second mean-value (or Bonnet) approach to the problem and the derivation of operational identities for Trigonometric functions we give in Section 8 a proof for the position of these genuine “analytic” zeros on the imaginary axis by construction of a contradiction for the case off the imaginary axis. In Section 10, we show by a few examples that monotonically decreasing of the Omega functions is only a sufficient condition for the mentioned property of the positions of zeros on the imaginary axis but not a necessary one.展开更多
Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers. In this work we present a new accelerated...Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers. In this work we present a new accelerated series for Riemann zeta function. As an application we describe the recursive algorithm for computation of the zeta function at odd integer arguments.展开更多
In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solv...In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solving this kind of doubly periodic Riemann boundary value problem of non-normal type and obtain the explicit expressions of solutions and the solvable conditions for it.展开更多
To prove RH, studying <span style="white-space:nowrap;"><em>ζ</em> </span>and using pure analysis method likely are two kinds of the incorrect guide. Actually, a unique hope may stud...To prove RH, studying <span style="white-space:nowrap;"><em>ζ</em> </span>and using pure analysis method likely are two kinds of the incorrect guide. Actually, a unique hope may study Riemann function <img src="Edit_b4e53620-7ae2-4a2b-aee0-351c62aef8cd.png" width="250" height="20" alt="" /> by geometric analysis, which has the symmetry: <span style="white-space:nowrap;"><em>v</em></span> = 0 if <span style="white-space:nowrap;"><em>β</em></span> = 0, and <img src="Edit_8c67c5d7-c1d4-4cad-8792-78e4bd172ebd.png" width="150" height="28" alt="" /> Assume that |<em>u</em>| is single peak in each root-interval <img src="Edit_a91df253-2965-4b03-8033-54aba2e23036.png" width="85" height="27" alt="" /> of <em>u</em> for any fixed <span style="white-space:nowrap;"><em>β</em></span> <span style="white-space:nowrap;">∈ (0,1/2]</span>, using the slope <em>u</em><sub><em>t </em></sub>of the single peak, we prove that <em>v</em> has opposite signs at two end-points of <em>I</em><sub><em>j</em></sub>, there surely is an inner point so that <em>v</em> = 0, so {|<em>u</em>|,|<em>v</em>|/<span style="white-space:nowrap;"><em>β</em></span>}form a local peak-valley structure, and have positive lower bound <img src="Edit_04798c0f-8e21-4a3a-ae12-0e28b01ee348.png" width="167" height="22" alt="" />in <em>I</em><sub><em>j</em></sub>. Because each <em>t</em> must lie in some <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub> , then ||<span style="white-space:nowrap;"><em>ξ</em></span>|| > 0 is valid for any <em>t</em>. In this way, the summation process of <span style="white-space:nowrap;"><em>ξ</em></span> is avoided. We have proved the main theorem: Assume that <em>u</em> (<em>t</em>, <span style="white-space:nowrap;"><em>β</em></span>) is single peak, then RH is valid for any <img src="Edit_ed8521a3-63b1-417f-a3b0-a3c790bae519.png" width="140" height="19" alt="" />. If using the equivalence of Lagarias (1999), the assumption of single peak can be canceled. Therefore our new thinking is that we have found the local peak-valley structure of <span style="white-space:nowrap;"><em>ξ</em></span>, which may be the geometry structure expected by Bombieri (2000), and proposed a basic framework of proving RH by geometric analysis.展开更多
Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would impr...Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would improve the prime numbers distribution knowledge. This conjecture constitutes one of the most important mathematics unsolved problems of the 21st century: it is one of the famous Hilbert problems proposed in 1900. In this article, a method for solving this conjecture is given. This work has been started by finding an analytical function which gives a best accurate 10<sup>-8</sup> of particular zeros sample that this number has increased gradually and finally prooving that this function is always irrational. This demonstration is important as allows Riemann’s zeta function to be a model function in the Dirichlet series theory and be at the crossroads of many other theories. Also, it is going to serve as a motivation and guideline for new studies.展开更多
Using the properties of theta-series and Schwarz reflection principle, a proof for Riemann hypothesis (RH) is directly presented and the first ten nontrivial zeros are easily obtained. From now on RH becomes Riemann T...Using the properties of theta-series and Schwarz reflection principle, a proof for Riemann hypothesis (RH) is directly presented and the first ten nontrivial zeros are easily obtained. From now on RH becomes Riemann Theorem (RT) and all its equivalent results and the consequences assuming RH are true.展开更多
文摘Riemann proved three results: analytically continue ζ(s) over the whole complex plane s =σ + it with a pole s =1;(Theorem A) functional equation ξ(t) = G(s<sub>0</sub>)ζ (s<sub>0</sub>), s<sub>0</sub> =1/2 + it and (Theorem B) product expression ξ<sub>1</sub>(t) by all roots of ξ(t). He stated Riemann conjecture (RC): All roots of ξ (t) are real. We find a mistake of Riemann: he used the same notation ξ(t) in two theorems. Theorem B must contain complex roots;it conflicts with RC. Thus theorem B can only be used by contradiction. Our research can be completed on s<sub>0</sub> =1/2 + it. Using all real roots r<sub>k</sub><sub> </sub>and (true) complex roots z<sub>j</sub> = t<sub>j</sub> + ia<sub>j</sub> of ξ (z), define product expressions w(t), w(0) =ξ(0) and Q(t) > 0, Q(0) =1 respectively, so ξ<sub>1</sub>(t) = w(t)Q(t). Define infinite point-set L(ω) = {t : t ≥10 and |ζ(s<sub>0</sub>)| =ω} for small ω > 0. If ξ(t) has complex roots, then ω =ωQ(t) on L(ω). Finally in a large interval of the first module |z<sub>1</sub>|>>1, we can find many points t ∈ L(ω) to make Q(t) . This contraction proves RC. In addition, Riemann hypothesis (RH) ζ for also holds, but it cannot be proved by ζ.
文摘Riemann (1859) had proved four theorems: analytic continuation ζ(s), functional equation ξ(z)=G(s)ζ(s)(s=1/2+iz, z=t−i(σ−1/2)), product expression ξ1(z)and Riemann-Siegel formula Z(z), and proposed Riemann conjecture (RC): All roots of ξ(z)are real. We have calculated ξand ζ, and found that ξ(z)is alternative oscillation, which intuitively implies RC, and the property of ζ(s)is not good. Therefore Riemann’s direction is correct, but he used the same notation ξ(t)=ξ1(t)to confuse two concepts. So the product expression only can be used in contraction. We find that if ξhas complex roots, then its structure is destroyed, so RC holds. In our proof, using Riemann’s four theorems is sufficient, needn’t cite other results. Hilbert (1900) proposed Riemann hypothesis (RH): The non-trivial roots of ζhave real part 1/2. Of course, RH also holds, but can not be proved directly by ζ(s).
基金Project supported by RFDP of Higher Education and NNSF of China, SF of Wuhan University.
文摘In this article, Riemann boundary value problem with different factors for polyanalytic functions on the real axis is studied. The expression of solution and sufficient and necessary condition for solvability of the non-homogeneous Riemann boundary value problem are obtained.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10771196 and 10831003)the Innovation Project of Zhejiang Province of China(Grant No.T200905)
文摘In this paper, a variable-coefficient modified Korteweg-de Vries (vc-mKdV) equation is considered. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function, then the one and two periodic wave solutions are presented~ and it is also shown that the soliton solutions can be reduced from the periodic wave solutions.
文摘This work shows, after a brief introduction to Riemann zeta function , the demonstration that all non-trivial zeros of this function lies on the so-called “critical line”,, the one Hardy demonstrated in his famous work that infinite countable zeros of the above function can be found on it. Thus, out of this strip, the only remaining zeros of this function are the so-called “trivial ones” . After an analytical introduction reminding the existence of a germ from a generic zero lying in , we show through a Weierstrass-Hadamard representation approach of the above germ that non-trivial zeros out of cannot be found.
文摘Riemann zeta function has a key role in number theory and in its applications. In this paper we present a new fast converging series for . Applications of the series include the computation of the and recursive computation of , and generally . We discuss on the production of irrational number sequences e.g. for encryption coding and zeta function maps for analysis and synthesis of log-time sampled signals.
基金Supported by NSF of China (11171260)RFDP of Higher Eduction of China (20100141110054)
文摘In this paper,we study the R m(m〉0) Riemann boundary value problems for regular functions,harmonic functions and bi-harmonic functions with values in a universal clifford algebra C(Vn,n).By using Plemelj formula,we get the solutions of R m(m〉0) Riemann boundary value problems for regular functions.Then transforming the Riemann boundary value problems for harmonic functions and bi-harmonic functions into the Riemann boundary value problems for regular functions,we obtain the solutions of R m(m〉0) Riemann boundary value problems for harmonic functions and bi-harmonic functions.
文摘The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.
文摘The purpose for this research was to investigate the Riemann zeta function at odd integer values, because there was no simple representation for these results. The research resulted in the closed form expression <img src="Edit_909dc64a-717a-4477-a9f8-a3b94ab4008e.bmp" alt="" /> for representing the zeta function at the odd integer values 2<em>n</em>+1 for <em>n</em> a positive integer. The above representation shows the zeta function at odd positive integers can be represented in terms of the Euler numbers <em>E</em><sub>2<em>n</em></sub> and the polygamma functions <em>ψ</em><sup>(2<em>n</em>)</sup>(3/4). This is a new result for this study area. For completeness, this paper presents a review of selected properties of the Riemann zeta function together with how these properties are derived. This paper will summarize how to evaluate zeta (n) for all integers n different from 1. Also as a result of this research, one can obtain a closed form expression for the Dirichlet beta series evaluated at positive even integers. The results presented enable one to construct closed form expressions for the Dirichlet eta, lambda and beta series evaluated at odd and even integers. Closed form expressions for Apéry’s constant zeta (3) and Catalan’s constant beta (2) are also presented.
文摘A standard method is proposed to prove strictly that the Riemann Zeta function equation has no non-trivial zeros. The real part and imaginary part of the Riemann Zeta function equation are separated completely. Suppose ξ(s) = ξ1(a,b) + iξ2(a,b) = 0 but ζ(s) = ζ1(a,b) + iζ2(a,b) ≠ 0 with s = a + ib at first. By comparing the real part and the imaginary part of Zeta function equation individually, a set of equation about a and b is obtained. It is proved that this equation set only has the solutions of trivial zeros. In order to obtain possible non-trivial zeros, the only way is to suppose that ζ1(a,b) = 0 and ζ2(a,b) = 0. However, by using the compassion method of infinite series, it is proved that ζ1(a,b) ≠ 0 and ζ2(a,b) ≠ 0. So the Riemann Zeta function equation has no non-trivial zeros. The Riemann hypothesis does not hold.
文摘To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically on the y-axis with period proportional to inverse step length u0. It is found that they possess additional zeros off the imaginary y-axis and additionally on this axis and vanish in the limiting case u0 → 0 in complex infinity. There remain then only the “genuine” zeros for Xi functions to continuous Omega functions which we call “analytic zeros” and which lie on the imaginary axis. After a short repetition of the Second mean-value (or Bonnet) approach to the problem and the derivation of operational identities for Trigonometric functions we give in Section 8 a proof for the position of these genuine “analytic” zeros on the imaginary axis by construction of a contradiction for the case off the imaginary axis. In Section 10, we show by a few examples that monotonically decreasing of the Omega functions is only a sufficient condition for the mentioned property of the positions of zeros on the imaginary axis but not a necessary one.
文摘Riemann zeta function is an important tool in signal analysis and number theory. Applications of the zeta function include e.g. the generation of irrational and prime numbers. In this work we present a new accelerated series for Riemann zeta function. As an application we describe the recursive algorithm for computation of the zeta function at odd integer arguments.
文摘In this paper, we present and study a kind of Riemann boundary value problem of non-normal type for analytic functions on two parallel curves. Making use of the method of complex functions, we give the method for solving this kind of doubly periodic Riemann boundary value problem of non-normal type and obtain the explicit expressions of solutions and the solvable conditions for it.
文摘To prove RH, studying <span style="white-space:nowrap;"><em>ζ</em> </span>and using pure analysis method likely are two kinds of the incorrect guide. Actually, a unique hope may study Riemann function <img src="Edit_b4e53620-7ae2-4a2b-aee0-351c62aef8cd.png" width="250" height="20" alt="" /> by geometric analysis, which has the symmetry: <span style="white-space:nowrap;"><em>v</em></span> = 0 if <span style="white-space:nowrap;"><em>β</em></span> = 0, and <img src="Edit_8c67c5d7-c1d4-4cad-8792-78e4bd172ebd.png" width="150" height="28" alt="" /> Assume that |<em>u</em>| is single peak in each root-interval <img src="Edit_a91df253-2965-4b03-8033-54aba2e23036.png" width="85" height="27" alt="" /> of <em>u</em> for any fixed <span style="white-space:nowrap;"><em>β</em></span> <span style="white-space:nowrap;">∈ (0,1/2]</span>, using the slope <em>u</em><sub><em>t </em></sub>of the single peak, we prove that <em>v</em> has opposite signs at two end-points of <em>I</em><sub><em>j</em></sub>, there surely is an inner point so that <em>v</em> = 0, so {|<em>u</em>|,|<em>v</em>|/<span style="white-space:nowrap;"><em>β</em></span>}form a local peak-valley structure, and have positive lower bound <img src="Edit_04798c0f-8e21-4a3a-ae12-0e28b01ee348.png" width="167" height="22" alt="" />in <em>I</em><sub><em>j</em></sub>. Because each <em>t</em> must lie in some <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub> , then ||<span style="white-space:nowrap;"><em>ξ</em></span>|| > 0 is valid for any <em>t</em>. In this way, the summation process of <span style="white-space:nowrap;"><em>ξ</em></span> is avoided. We have proved the main theorem: Assume that <em>u</em> (<em>t</em>, <span style="white-space:nowrap;"><em>β</em></span>) is single peak, then RH is valid for any <img src="Edit_ed8521a3-63b1-417f-a3b0-a3c790bae519.png" width="140" height="19" alt="" />. If using the equivalence of Lagarias (1999), the assumption of single peak can be canceled. Therefore our new thinking is that we have found the local peak-valley structure of <span style="white-space:nowrap;"><em>ξ</em></span>, which may be the geometry structure expected by Bombieri (2000), and proposed a basic framework of proving RH by geometric analysis.
文摘Formulated in 1859 by the mathematician Bernhard Riemann, the Riemann hypothesis is a conjecture. She says that the Riemann’s Zeta function non-trivial zeros of all have real part . This demonstration would improve the prime numbers distribution knowledge. This conjecture constitutes one of the most important mathematics unsolved problems of the 21st century: it is one of the famous Hilbert problems proposed in 1900. In this article, a method for solving this conjecture is given. This work has been started by finding an analytical function which gives a best accurate 10<sup>-8</sup> of particular zeros sample that this number has increased gradually and finally prooving that this function is always irrational. This demonstration is important as allows Riemann’s zeta function to be a model function in the Dirichlet series theory and be at the crossroads of many other theories. Also, it is going to serve as a motivation and guideline for new studies.
文摘Using the properties of theta-series and Schwarz reflection principle, a proof for Riemann hypothesis (RH) is directly presented and the first ten nontrivial zeros are easily obtained. From now on RH becomes Riemann Theorem (RT) and all its equivalent results and the consequences assuming RH are true.