Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are inter...Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.展开更多
Objective The uplift process and uplift mechanism of the Tibetan Plateau has been a research focus among geologists in recent years. This work put emphasis on the Cenozoic exhumation histories of the blocks bounded by...Objective The uplift process and uplift mechanism of the Tibetan Plateau has been a research focus among geologists in recent years. This work put emphasis on the Cenozoic exhumation histories of the blocks bounded by the major faults at the central segment of the Longmenshan thrust belt, and the vertical faulting history, including the starting time and the total vertical displacement, of the major faults. Then we quantitatively established a complete active process for the central segment of the Longmenshan thrust belt, combining with the previous geophysical data in the deep and geologcial data. This study is critical for deeply and completely understanding the Cenozoic uplift history of the Longmenshan, and also provides thermochronology constraints to the different models for the uplift of the eastern margin of the Tibetan Plateau.展开更多
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,befor...The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB.展开更多
The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB)at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo...The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB)at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT)data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma)cooling and a more prominent record of(late)Early Cretaceous(~150-110 Ma)cooling.The apatite(U-Th)/He age results are consistent with the(late)Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time.展开更多
The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-sl...The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB.展开更多
The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of str...The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall,and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.展开更多
As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reape...As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults.展开更多
基金The National Science and Technology Major Project of China under contract No.2011ZX05025-002-02the National Natural Sci-ence Foundation of China under contract Nos 41272121,91028009 and 41102071
文摘Using regional geological, newly acquired 2D and 3D seismic, drilling and well log data, especially 2D long cable seismic profiles, the structure and stratigraphy in the deep-water area of Qiongdongnan Basin are interpreted. The geometry of No.2 fault system is also re-defined, which is an important fault in the central depression belt of the deep-water area in the Qiongdongnan Basin by employing the quantitative analysis techniques of fault activity and backstripping. Furthermore, the dynamical evolution of the No.2 fault sys-tem and its controls on the central depression belt are analyzed. This study indicates that the Qiongdongnan Basin was strongly influenced by the NW-trending tensile stress field during the Late Eocene. At this time, No.2 fault system initiated and was characterized by several discontinuous fault segments, which controlled a series small NE-trending fault basins. During the Oligocene, the regional extensional stress field changed from NW-SE to SN with the oceanic spreading of South China Sea, the early small faults started to grow along their strikes, eventually connected and merged as the listric shape of the No.2 fault system as ob-served today. No.2 fault detaches along the crustal Moho surface in the deep domain of the seismic profiles as a large-scale detachment fault. A large-scale rollover anticline formed in hanging wall of the detachment fault. There are a series of small fault basins in both limbs of the rollover anticline, showing that the early small basins were involved into fold deformation of the rollover anticline. Structurally, from west to east, the central depression belt is characterized by alternatively arranged graben and half-graben. The central depression belt of the Qiongdongnan Basin lies at the extension zone of the tip of the V-shaped northwest-ern ocean sub-basin of the South China Sea, its activity period is the same as the development period of the northwestern ocean sub-basin, furthermore the emplacement and eruption of magma that originated from the mantle below the Moho surface occurred at the region between Songnan-Baodao and Changchang sags, from east to west with the early-stage spreading of the South China Sea. Therefore, this study not only helps in depicting the structural features and evolution of the deep-water basin in the Qiongdongnan Basin, but also provides the geological and structural evidence for establishing a unified model of continental margin extension and oceanic spreading.
基金supported by the National Natural Science Foundation of China(grant No.41302159)
文摘Objective The uplift process and uplift mechanism of the Tibetan Plateau has been a research focus among geologists in recent years. This work put emphasis on the Cenozoic exhumation histories of the blocks bounded by the major faults at the central segment of the Longmenshan thrust belt, and the vertical faulting history, including the starting time and the total vertical displacement, of the major faults. Then we quantitatively established a complete active process for the central segment of the Longmenshan thrust belt, combining with the previous geophysical data in the deep and geologcial data. This study is critical for deeply and completely understanding the Cenozoic uplift history of the Longmenshan, and also provides thermochronology constraints to the different models for the uplift of the eastern margin of the Tibetan Plateau.
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金supported by the China Geological Survey (Grant Nos. DD20160083, DD20160344-05)the Chinese Academy of Geological Sciences Research Fund (Grant No. CAGS-YWF201706)
文摘The West Junggar Orogenic Belt(WJOB)in northwestern Xinjiang,China,is located in the core of the western part of the Central Asian Orogenic Belt(CAOB).It has suffered two stage tectonic evolutions in Phanerozoic,before and after the ocean–continental conversion in Late Paleozoic.The later on intracontinental deformation,characterized by the development of the NE-trending West Junggar sinistral strike-slip fault system(WJFS)since Late Carboniferous and Early Permian,and the NW-trending Chingiz-Junggar dextral strike-slip fault(CJF)in Mesozoic and Cenozoic,has an important significance for the tectonic evolution of the WJOB and the CAOB.In this paper,we conduct geometric and kinematic analyses of the WJOB,based on field geological survey and structural interpretation of remote sensing image data.Using some piercing points such as truncated plutons and anticlines,an average magnitude of^73 km for the left-lateral strike-slip is calculated for the Darabut Fault,a major fault of the WJFS.Some partial of the displacement should be accommodated by strike-slip fault-related folds developed during the strike-slip faulting.Circular and curved faults,asymmetrical folds,and irregular contribution of ultramafic bodies,implies potential opposite vertical rotation of the Miao’ergou and the Akebasitao batholiths,resulted from the sinistral strike-slipping along the Darabut Fault.Due to conjugate shearing set of the sinistral WJFS and the dextral CJF since Early Mesozoic,superimposed folds formed with N–S convergence in southwestern part of the WJOB.
基金supported by an Australian Research Council Discovery Project(DP150101730)the National Key R&D Program of China(2017YFC0601206)+1 种基金the National Natural Science Foundation of China(41888101)supported by the state assignment of IGM SB RAS
文摘The Junggar Alatau forms the northern extent of the Tian Shan within the Central Asian Orogenic Belt(CAOB)at the border of SE Kazakhstan and NW China.This study presents the Palaeozoic-Mesozoic post-collisional thermo-tectonic history of this frontier locality using an integrated approach based on three apatite geo-/thermochronometers:apatite U-Pb,fission track and(U-Th)/He.The apatite U-Pb dates record Carboniferous-Permian post-magmatic cooling ages for the sampled granitoids,reflecting the progressive closure of the Palaeo-Asian Ocean.The apatite fission track(AFT)data record(partial)preservation of the late Palaeozoic cooling ages,supplemented by limited evidence for Late Triassic(~230-210 Ma)cooling and a more prominent record of(late)Early Cretaceous(~150-110 Ma)cooling.The apatite(U-Th)/He age results are consistent with the(late)Early Cretaceous AFT data,revealing a period of fast cooling at that time in resulting thermal history models.This Cretaceous rapid cooling signal is only observed for samples taken along the major NW-SE orientated shear zone that dissects the study area(the Central Kazakhstan Fault Zone),while Permian and Triassic cooling signals are preserved in low-relief areas,distal to this structure.This distinct geographical trend with respect to the shear zone,suggests that fault reactivation triggered the Cretaceous rapid cooling,which can be linked to a phase of slab-rollback and associated extension in the distant Tethys Ocean.Similar conclusions were drawn for thermochronology studies along other major NW-SE orientated shear zones in the Central Asian Orogenic Belt,suggesting a regional phase of Cretaceous exhumation in response to fault reactivation at that time.
基金Financial support from the National Key Research and Development Program of China(the DREAM-Deep Resource Exploration and Advanced Mininggrant No.2018YFC0603701)the China Geological Survey(grant Nos.DD20160083 and DD20190011)。
文摘The migration,accumulation and dispersion of elements caused by tectonic dynamics have always been a focus of attention,and become the basis of tectono-geochemistry.However,the effects of faulting,especially strike-slip faulting,on the adjustment of geochemical element distribution,are still not clear.In this paper,we select the West Junggar Orogenic Belt(WJOB),NW China,as a case study to test the migration behavior of elements under tectonic dynamics.The WJOB is dominated by NE-trending large-scale sinistral strike-slip faults such as the Darabut Fault,the Mayile Fault,and the Baerluke Fault,which formed during the intracontinental adjustment under N-S compression during ocean-continental conversion in the Late Paleozoic.Geochemical maps of 13 elements,Al,W,Sn,Mo,Cu,Pb,Zn,As,Sb,Hg,Fe,Ni,and Au,are analyzed for the effects of faulting and folding on element distribution at the regional scale.The results show that the element distribution in the WJOB is controlled mainly by two mechanisms during tectonic deformation:first is the material transporting mechanism,where the movement of geological units is consistent with the direction of tectonic movement;second is the diffusion mechanism,especially by tectonic pressure dissolution driven by tectonic dynamics,where the migration of elements is approximately perpendicular or opposite to the direction of tectonic movement.We conclude that the adjustment of element distributions has been determined by the combined actions of transporting and diffusion mechanisms,and that the diffusion mechanism plays an important role in the formation of geochemical Au blocks in the WJOB.
文摘The central structure belt in Turpan-Hami basin is composed of the Huoyanshan structure and Qiketai structure formed in late Triassic-early Jurassic, and is characterized by extensional tectonics. The thickness of strata in the hanging wall of the growth fault is obviously larger than that in the footwall,and a deposition center was evolved in the Taibei sag where the hanging wall of the fault is located. In late Jurassic the collision between Lhasa block and Eurasia continent resulted in the transformation of the Turpan-Hami basin from an extensional structure into a compressional structure, and consequently in the tectonic inversion of the central structure belt of the Turpan-Hami basin from the extensional normal fault in the earlier stage to the compressive thrust fault in the later stage. The Tertiary collision between the Indian plate and the Eurasian plate occurred around 55Ma, and this Himalayan orogenic event has played a profound role in shaping the Tianshan area, only the effect of the collision to this area was delayed since it culminated here approximately in late Oligocene-early Miocene. The central structure belt was strongly deformed and thrusted above the ground as a result of this tectonic event.
文摘As the main part of the “central mountain system” in the continent of China, the Qinling, Qilian and Kunlun orogenic belts have been comprehensively and deeply studied since the 1970s and rich fruits have been reaped. However, these achievements were mostly confined to an individual orogenic belt and the study of the mutual relationship among the three orogenic belts was obliged to depend on comparative studies. Different views were produced therefrom. The material composition and structural features of the junction region show that there are several epicontinental and intracontinental transform faults developed in different periods. Restricted by these transform faults, the large-scale lateral movements and, as a consequence, complicated magmatism and tectonic deformation took place in the orogenic belts. According to these features, the authors put forward a three-stage junction and evolution model and point out that there is not a single junction zone traversing from west to east but that the three orogenic belts have been joined progressively by the epicontinental and intracontinental transform faults.