Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one...Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.展开更多
A finite element analysis of the beam-to-column web connection with H-shaped columns was performed using the ANSYS computer program. Based on the finite element analysis and theoretical analysis, a simplified model wa...A finite element analysis of the beam-to-column web connection with H-shaped columns was performed using the ANSYS computer program. Based on the finite element analysis and theoretical analysis, a simplified model was developed to describe the cyclic loading behavior of beam-to-columns web connection in steel moment resisting frames, considering both bending and shear deformation modes of the beam flange plate. Several issues appearing to merit further researches were identified in the process of developing this model, such as the effect of beam flange plate on beam-to-column web connection stiffness and strength. A reasonable agreement was achieved between model predictions and finite element data, which verified the feasibility of the proposed model.展开更多
The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by i...The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.展开更多
This paper focused on investigating local tensile strength of connection between steel beam flange and concrete-filled circular column tube with through diaphragm. Three specimens were designed and tested to failure, ...This paper focused on investigating local tensile strength of connection between steel beam flange and concrete-filled circular column tube with through diaphragm. Three specimens were designed and tested to failure, and the structure behavior was studied by experiment and FEM analysis. On the basis of the results obtained, an estimation for local plastic and ultimate strengths of the connections using yield line theory was attempted, which results in a good prediction.展开更多
So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder ...So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.展开更多
文摘Ten full-scale steel beam-to-column moment connections used in moment-resisting frames (MRFs) were tested to study the failure process, failure mode, strength and plastic rotation capacity. The specimens include one traditional welded flange-bolted web connection, one traditional fully welded connection, four beam flange strengthened connections, three beam flange weakened connections, and one through-diaphragm connection. The test results show that the connections with flange cover plates or with partly cut beam flanges satisfy the beam plastic rotation demand for ductile MRFs. From the measured stress profiles along the beam flange and beam web depth, the mechanics of brittle fracture at the end of the beam is discussed. Design recommendations for steel beam-to-column moment connections are proposed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50538050)Foundation of Heilongjiang Educational Committee(Grant No.11521210)
文摘A finite element analysis of the beam-to-column web connection with H-shaped columns was performed using the ANSYS computer program. Based on the finite element analysis and theoretical analysis, a simplified model was developed to describe the cyclic loading behavior of beam-to-columns web connection in steel moment resisting frames, considering both bending and shear deformation modes of the beam flange plate. Several issues appearing to merit further researches were identified in the process of developing this model, such as the effect of beam flange plate on beam-to-column web connection stiffness and strength. A reasonable agreement was achieved between model predictions and finite element data, which verified the feasibility of the proposed model.
文摘The beam-to-column semirigid connection in a steel frame structure is represented by a zero-length rotational spring at the end of the beam element. The beam-to-column semirigid connection behavior is represented by its moment-rotation relationship. Several traditional mathematical models have been proposed to fit the moment-rotation curves from the experimental database,but they may be more reliable within certain ranges. In this paper, the intellectualized analytical model is proposed in the semirigid connections for top and seat angles with double web angles using the feed-forward back-propagation artificial neural network (BP-ANN) technique. the intellectualized analytical model from experimental results based on BP-ANN is more reliable and it is a better choice to the moment-rotation curves for beam-to-column semirigid connection. The results are found to provide effectiveness to the experimental response that is satisfactory for use in steel structural engineering design.
文摘This paper focused on investigating local tensile strength of connection between steel beam flange and concrete-filled circular column tube with through diaphragm. Three specimens were designed and tested to failure, and the structure behavior was studied by experiment and FEM analysis. On the basis of the results obtained, an estimation for local plastic and ultimate strengths of the connections using yield line theory was attempted, which results in a good prediction.
文摘So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.