The Earth is taken as a triaxial rigid body, which rotates freely in the Euclidian space. The starting equations are the Euler dynamic equations, with A smaller than B and B smaller than C. The Euler equations are sol...The Earth is taken as a triaxial rigid body, which rotates freely in the Euclidian space. The starting equations are the Euler dynamic equations, with A smaller than B and B smaller than C. The Euler equations are solved, and the numerical results are provided. In the calculations, the following parameters are used: (C-B)/A=0.003 273 53; (B-A)/C=0.000 021 96; (C-A)/B=0.003 295 49, and the mean angular velocity of the Earth's rotation, ω =0.000 072 921 15 rad/s. Calculations show that, besides the self-rotation of the Earth and the free Euler procession of its rotation, there exists the free nutation: the nutation angle, or the angle between the Earth's momentary rotation axis and the mean axis that periodically change with time. The free nutation is investigated.展开更多
When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poiss...When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poisson structure was transformed into the symplectic structure by the nonlinear transform. Arbitrary order symplectic method was applied to the transformed Poisson system. The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the mid-point scheme. Numerical results show the effectiveness of the nonlinear transform.展开更多
A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed...A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed initial boundary value problem is formulated with a priori unknown boundaries moving with variable velocity. The problem is solved using the methods of the theory of integral transforms, expansion of desired variables into a Fourier series, and the quadrature method to reduce the problem to solving a system of linear algebraic equations at each time step. Some concrete numerical computations are presented.The cylindrical body mass and radius impact on the proile of the transient process of contact interaction has been analysed.展开更多
In this paper we present how nonlinear stochastic Itˆo differential equations arising in the modelling of perturbed rigid bodies can be solved numerically in such a way that the solution evolves on the correct manifol...In this paper we present how nonlinear stochastic Itˆo differential equations arising in the modelling of perturbed rigid bodies can be solved numerically in such a way that the solution evolves on the correct manifold.To this end,we formulate an approach based on Runge-Kutta–Munthe-Kaas(RKMK)schemes for ordinary differ-ential equations on manifolds.Moreover,we provide a proof of the mean-square convergence of this stochastic version of the RKMK schemes applied to the rigid body problem and illustrate the effectiveness of our proposed schemes by demonstrating the structure preservation of the stochastic RKMK schemes in contrast to the stochastic Runge-Kutta methods.展开更多
基金Funded by the National Natural Science Foundation of China (No.40574004).
文摘The Earth is taken as a triaxial rigid body, which rotates freely in the Euclidian space. The starting equations are the Euler dynamic equations, with A smaller than B and B smaller than C. The Euler equations are solved, and the numerical results are provided. In the calculations, the following parameters are used: (C-B)/A=0.003 273 53; (B-A)/C=0.000 021 96; (C-A)/B=0.003 295 49, and the mean angular velocity of the Earth's rotation, ω =0.000 072 921 15 rad/s. Calculations show that, besides the self-rotation of the Earth and the free Euler procession of its rotation, there exists the free nutation: the nutation angle, or the angle between the Earth's momentary rotation axis and the mean axis that periodically change with time. The free nutation is investigated.
文摘When the Poisson matrix of Poisson system is non-constant, classical symplectic methods, such as symplectic Runge-Kutta method, generating function method, cannot preserve the Poisson structure. The non-constant Poisson structure was transformed into the symplectic structure by the nonlinear transform. Arbitrary order symplectic method was applied to the transformed Poisson system. The Euler equation of the free rigid body problem was transformed into the symplectic structure and computed by the mid-point scheme. Numerical results show the effectiveness of the nonlinear transform.
文摘A numerical–analytical approach is described to investigate the process of impact interaction between a long smooth rigid body and the surface of a circular cylindrical cavity in elastic space. A non-stationary mixed initial boundary value problem is formulated with a priori unknown boundaries moving with variable velocity. The problem is solved using the methods of the theory of integral transforms, expansion of desired variables into a Fourier series, and the quadrature method to reduce the problem to solving a system of linear algebraic equations at each time step. Some concrete numerical computations are presented.The cylindrical body mass and radius impact on the proile of the transient process of contact interaction has been analysed.
基金supported by the bilateral German-Slovakian Project MATTHIAS–Modelling and Approximation Tools and Techniques for Hamilton-Jacobi-Bellman equations in finance and Innovative Approach to their Solution,financed by DAAD and the Slovakian Ministry of EducationFurther the authors acknowledge partial support from the bilateral German-Portuguese Project FRACTAL–FRActional models and CompuTationAL Finance financed by DAAD and the CRUP–Conselho de Reitores das Universidades Portuguesas.
文摘In this paper we present how nonlinear stochastic Itˆo differential equations arising in the modelling of perturbed rigid bodies can be solved numerically in such a way that the solution evolves on the correct manifold.To this end,we formulate an approach based on Runge-Kutta–Munthe-Kaas(RKMK)schemes for ordinary differ-ential equations on manifolds.Moreover,we provide a proof of the mean-square convergence of this stochastic version of the RKMK schemes applied to the rigid body problem and illustrate the effectiveness of our proposed schemes by demonstrating the structure preservation of the stochastic RKMK schemes in contrast to the stochastic Runge-Kutta methods.