A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The ex...A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.展开更多
文摘A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.