期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Characteristics of turbulent flow in 3-D pools in the presence of submerged rigid vegetation in channel bed
1
作者 Kourosh Nosrati Hossein Afzalimehr +1 位作者 Jueyi Sui Hamid Reza Reisifar 《Journal of Hydrodynamics》 SCIE EI CSCD 2024年第1期158-169,共12页
In this study,the interaction between 3-D bedforms and submerged rigid vegetation has been investigated.Various laboratory experiments were conducted to study the distribution of flow velocity,Reynolds shear stress,tu... In this study,the interaction between 3-D bedforms and submerged rigid vegetation has been investigated.Various laboratory experiments were conducted to study the distribution of flow velocity,Reynolds shear stress,turbulent kinetic energy,and skewness coefficients for a constant density of vegetation.Results showed that the velocity profile in the pool section deviates from those in the upstream section of the pool.It has been found that the dip parameter varied between 0.6H and 0.9H depending on various factors including bed roughness,vegetation distribution,and pool entrance/exit slopes.However,scattered vegetation in the pool and differences in slopes created non-uniform flow conditions.Also,in the wake region behind each vegetated element,flow velocity reduced significantly,and small-scale eddies are formed,causing increased perturbations.By decreasing the entrance slope and bed roughness,relatively uniform flow and weaker turbulence was resulted,but the random distribution of vegetated elements counteracted this balance and intensified turbulence.With the decrease in the pool entrance slope,the contribution of sweep event decreased and the contribution of ejection event increased. 展开更多
关键词 Submerged rigid vegetation 3-D pool Reynolds shear stress skewness coefficients
原文传递
MATHEMATICAL MODEL FOR THE FLOW WITH SUBMERGED AND EMERGED RIGID VEGETATION 被引量:28
2
作者 HUAI Wen-xin CHEN Zheng-bing +2 位作者 HAN Jie ZHANG Li-xiang ZENG Yu-hong 《Journal of Hydrodynamics》 SCIE EI CSCD 2009年第5期722-729,共8页
The article summarizes previous studies on the flow in open channels with rigid vegetation, and constructs a mathematical model for submerged and emerged rigid vegetation. The model involves the forces balance in the ... The article summarizes previous studies on the flow in open channels with rigid vegetation, and constructs a mathematical model for submerged and emerged rigid vegetation. The model involves the forces balance in the control volume in one-dimensional steady uniform flow. For submerged vegetation, the whole flow is divided into four regions: external region, upper vegetated region, transition region and viscous region. According to the Karrnan similarity theory, the article improves the mixing length expression, and then gives an analytical solution to predict the vertical distribution of stream-wise velocity in the external region. For emerged vegetation, the flow is divided into two region: outer region and viscous region. In the two circumstances, the thicknesses of each region are determined respectively. The comparison between the calculated results and our experimental data and other researchers' data proves that the proposed model is effective. 展开更多
关键词 Karman similarity theory mixing length submerged and emerged rigid vegetation velocity distribution
原文传递
An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation 被引量:13
3
作者 WANG Hao TANG HongWu +2 位作者 YUAN SaiYu LV ShengQi ZHAO XuanYu 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第6期1165-1174,共10页
This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinde... This paper investigates the bed shear stress based on the condition of the incipient motion of sediment in a uniform-flow flume covered with emergent rigid vegetation,which is represented by arrays of circular cylinders arranged in a regular pattern.A total of 148 tests are performed to observe the influence of the vegetation density,bed slope,flow depth and sediment size on the bed shear stress.The tests reveal that when the sediment is in incipient motion,the resistances acting on the flow passing the rigid vegetation contain the vegetation resistance and the bed shear stress.This shear stress could be divided into two parts:the grain shear stress and the shear stress caused by sand dunes,which are the deformed bedform with the sediment incipient motion.An empirical relationship between the shear stress of the sand dune and vegetation density,the Froude number,the apparent vegetation layer velocity is developed. 展开更多
关键词 open channel flows hydraulic radius incipient motion bed shear stress emergent rigid vegetation
原文传递
CHARACTERISTICS OF FLOW RESISTANCE IN OPEN CHANNELS WITH NON-SUBMERGED RIGID VEGETATION 被引量:18
4
作者 WU Fu-sheng 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第2期239-245,共7页
The flow resistance factors of non-submerged rigid vegetation in open channels were analyzed. The formulas of drag coefficient CD and equivalent Manning's roughness coefficient na were derived by analyzing the force ... The flow resistance factors of non-submerged rigid vegetation in open channels were analyzed. The formulas of drag coefficient CD and equivalent Manning's roughness coefficient na were derived by analyzing the force of the flow of non-submerged rigid vegetation in open channel. The flow characteristics and mechanism of non-submerged rigid vegetation in open channel were studied through flume experiments. 展开更多
关键词 characteristics of flow resistance non-submerged rigid vegetation drag coefficient equivalent Manning's roughness coefficient
原文传递
Flow characteristics in open channels with aquatic rigid vegetation 被引量:4
5
作者 Yan-jie Wu He-fang Jing +1 位作者 Chun-guang Li Ying-ting Song 《Journal of Hydrodynamics》 SCIE EI CSCD 2020年第6期1100-1108,共9页
In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm... In order to study the flow characteristics in water bodies with rigid aquatic vegetation,series of laboratory experiments are carried out in an open channel,in which glass rods are used as plants with diameters of 6mm,8mm and 10mm,respectively.For each diameter of glass rods,four typical cases are considered with various densities and arrangements of glass rods.The flow velocities in the four cases are measured by the 3-D laser Doppler velocimeter(LDV).The water surface slope,the flow velocity,the water head loss,the vegetation drag force and the hydraulic slope are calculated,analyzed and discussed.The horizontal,vertical and total vegetation densities in the vegetation area are defined and the relationship between these physical parameters and the water surface slope are studied.The head loss and the hydraulic slope in the vegetation area are also calculated,compared and analyzed.It is indicated that the water surface slope and velocity,the head loss and the hydraulic slope in the vegetation area have a close relationship with the arrangement,the density,and the plant diameter of the vegetation. 展开更多
关键词 Aquatic rigid vegetation flow velocity laser Doppler velocimeter(LDV) head loss hydraulic slope
原文传递
A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation
6
作者 Jun-tao Ren Xue-fei Wu Ting Zhang 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第4期833-843,共11页
This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verificat... This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verification by using experimental measurements, a sensitivity analysis is conducted for the vegetation diameter, the vegetation height and the flow discharge. For the longitudinal velocity, the greatest impact on the flow structure originates from the vegetation diameter, rather than the discharge. The vegetation height, however, determines the inflection point of the vertical distribution. Comparing the transverse velocities at two positions in the vegetated area, i.e., the upstream and the downstream, a symmetric pattern is identified along the water depth. The same pattern is also observed for the vertical velocity regardless of the flow or vegetation scenario, including both transverse and vertical fluid circulation patterns in the vegetated area. Moreover, the larger the vegetation diameter is, the more evident these patterns become. The upper circulation occurs near the vegetation canopy. These findings regarding the circulations along the transverse and vertical directions in the vegetated region shed light on the 3-D flow structure through the submerged vegetation. 展开更多
关键词 Submerged rigid vegetation longitudinal velocity transverse velocity vertical velocity open channel
原文传递
3-D numerical simulation of curved open channel confluence flow with partially non-submerged rigid vegetation
7
作者 Zheng-rui Shi Cong-fang Ai Sheng Jin 《Journal of Hydrodynamics》 SCIE EI CSCD 2021年第5期992-1006,共15页
For the study of the effects of partially non-submerged rigid vegetation on the free-surface confluence flow in a curved open channel,a numerical simulation is carried out by using the Volume of Fluid model combined w... For the study of the effects of partially non-submerged rigid vegetation on the free-surface confluence flow in a curved open channel,a numerical simulation is carried out by using the Volume of Fluid model combined with the porous media model with the software OpenFOAM.The model is first validated by using available experimental measurement data with a good agreement.Then,the characteristics of the separation zone generated by the centrifugal forces and the confluence flow are analyzed.Due to the resistance created by the vegetation,the velocities in the separation zone are more chaotic and the separation zone becomes smaller and more irregular.The reduction of the separation zone area of the vegetated flow in the convex bank is more significant than that in the concave bank.The velocities in the vegetated region become much smaller and remains so in the downstream flow after the vegetation region.Meanwhile,the vegetation compresses and divides the circulations in the flow area,rebuilding a structure with smaller circulations in the main flow and unclear circulations in the vegetation region.In addition,the bed wall shear stresses are significantly smaller in the vegetation region and the separation zone compared to the non-vegetated flow.This implies that the vegetation can have the effect of protecting the river bed from erosion. 展开更多
关键词 Curved open channel confluence flow porous media model non-submerged rigid vegetation separation zone
原文传递
Wave Attenuation and Turbulence Driven by Submerged Vegetation Under Current-Wave Flow
8
作者 HUANG Yu-ming Ding Lei +3 位作者 WANG Yi-fei CHEN Ben YANG Xiao-yu DOU Xi-ping 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期602-611,共10页
A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the co... A set of laboratory experiments are carried out to investigate the effect of following/opposing currents on wave attenuation.Rigid vegetation canopies with aligned and staggered configurations were tested under the condition of various regular wave heights and current velocities,with the constant water depth being 0.60 m to create the desired submerged scenarios.Results show that the vegetation-induced wave dissipation is enhanced with the increasing incident wave height.A larger velocity magnititude leads to a greater wave height attenuation for both following and opposing current conditions.Moreover,there is a strong positive linear correlation between the damping coefficientβand the relative wave height H_(0)/h,especially for pure wave conditions.For the velocity profile,the distributions of U_(min)and U_(max)show different patterns under combined wave and current.The time-averaged turbulent kinetic energy(TKE)vary little under pure wave and U_(c)=±0.05 m/s conditions.With the increase of flow velocity amplitude,the time-averaged TKE shows a particularly pronounced increase trend at the top of the canopy.The vegetation drag coefficients are obtained by a calibration approach.The empirical relations of drag coefficient with Reynolds and Keulegane-Carpenter numbers are proposed to further understand the wave-current-vegetation interaction mechanism. 展开更多
关键词 wave attenuation rigid vegetation following and opposing currents turbulent kinetic energy
下载PDF
Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation 被引量:5
9
作者 Naveed Anjum Norio Tanaka 《Water Science and Engineering》 EI CAS CSCD 2019年第4期319-329,共11页
The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence... The velocity structures of flow through vertically double-layered vegetation(VDLV)as well as single-layered rigid vegetation(SLV)were investigated computationally with a three-dimensional(3D)Reynolds stress turbulence model,using the computational fluid dynamics(CFD)code FLUENT.The detailed velocity distribution was explored with a varying initial Froude number(Fr),with consideration of the steady subcritical flow conditions of an inland tsunami.In VDLV flows,the numerical model successfully captured the inflection point in the profiles of mean streamwise velocities in the mixing-layer region around the top of short submerged vegetation.An upward and downward movement of flow occurred at the positions located just behind the tall and short vegetation,respectively.Overall,higher streamwise velocities were observed in the upper vegetation layer due to high porosity,with Pr=98%(sparse vegetation,where Pr is the porosity),as compared to those in the lower vegetation layer,which had comparatively low porosity,with Pr=91%(dense vegetation).A rising trend of velocities was found as the flow passed through the vegetation region,followed by a clear sawtooth distribution,as compared to the regions just upstream and downstream of vegetation where the flow was almost uniform.In VDLV flows,a rising trend in the flow resistance was observed with the increase in the initial Froude number,i.e.,Fr?0.67,0.70,and 0.73.However,the flow resistance in the case of SLV was relatively very low.The numerical results also show the flow structures within the vicinity of short and tall vegetation,which are difficult to attain through experimental measurements. 展开更多
关键词 Vertically double-layered vegetation Single-layered rigid vegetation Numerical modeling FLUENT Velocity distribution Turbulent flow
下载PDF
Effect of Mixed Vegetation of Different Heights on Open Channel Flows
10
作者 Xiaonan Tang Yutong Guan +4 位作者 Ming Li Hanyi Wang Jiaze Cao Suyang Zhang Nanyu Xiao 《Journal of Geoscience and Environment Protection》 2023年第3期305-314,共10页
Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and en... Vegetation of different heights commonly grows in natural rivers, canals and wetlands and affects the biodiversity and morphological process. The role of vegetation has drawn great attention in river ecosystems and environmental management. Due to the complexity of the vegetated flow, most previous research focuses on the effect of uniformed one-layered vegetation on the flow structure and morphological process. However, less attention was paid to the impact of the mixing vegetation of different heights, which is more realistic and often occurs in natural riverine environments. This paper aims to investigate the effect of mixing three-layered vegetation on flow characteristics, particularly the velocity distrbution, via a novel experiment. Experiments were performed in a titling water flume fully covered with vegetation of three heights (10, 15 and 20 cm) arranged in a staggered pattern, which is partially submerged. Velocities at different positions along a half cross-section were measured using a mini propeller velocimeter. Observed results showed that the velocity has a distinct profile directly behind vegetation and behind the vegetation gap. The overall profile has two distinct reflections about ? below or near the top of short vegetation (h): the velocity remains almost constant in the bottom layer ( h) the velocities directly behind the middle after short vegetation increase much faster than those directly behind the short after tall vegetation. The finding in this study would help river riparian and ecosystem management. . 展开更多
关键词 rigid vegetation Mixed-Layered vegetation RIPARIAN Velocity Distribution Submerged Flow Open Channel
下载PDF
CURVED OPEN CHANNEL FLOW ON VEGETATION ROUGHENED INNER BANK 被引量:7
11
作者 HUAI Wen-xin LI Cheng-guang +2 位作者 ZENG Yu-hong QIAN Zhong-dong YANG Zhong-hua 《Journal of Hydrodynamics》 SCIE EI CSCD 2012年第1期124-129,共6页
A RNG numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the flow through a 180o curved open channel(a 4 m straight inflow section,a 180o curved section,and a 4m straight... A RNG numerical model together with a laboratory measurement with Micro ADV are adopted to investigate the flow through a 180o curved open channel(a 4 m straight inflow section,a 180o curved section,and a 4m straight outflow section)partially covered with rigid vegetations on its inner bank.Under the combined action of the vegetation and the bend flow,the flow structure is complex.The stream-wise velocities in the vegetation region are much smaller than those in the non-vegetation region due to the retardation caused by the vegetation.For the same reason,no clear circulation is found in the vegetated region,while in the non-vegetation region,a slight counter-rotating circulation is found near the outer bank at both 90o and downstream curved cross-sections.A comparison between the numerical prediction and the laboratory measurement shows that the RNG model can well predict the flow structure of the bend flow with vegetation.Furthermore,the shear stress is analyzed based on the numerical prediction.The much smaller value in the inner vegetated region indicates that the vegetation can effectively protect the river bank from scouring and erosion,in other words,the sediment is more likely to be deposited in the vegetation region. 展开更多
关键词 RNG numerical model non-submerged rigid vegetation bend flow stream-wise velocities shear stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部