Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,...Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,the rigid neural probes,such as Utah arrays,Michigan probes,and metal microfilament electrodes,are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation,which leads to a significant degradation in the signal quality with the implantation time.In recent years,flexible neural electrodes are rapidly developed with less damage to biological tissues,excellent biocompatibility,and mechanical compliance to alleviate scarring.Among them,the mechanical modeling is important for the optimization of the structure and the implantation process.In this review,the theoretical calculation of the flexible neural probes is firstly summarized with the processes of buckling,insertion,and relative interaction with soft brain tissue for flexible probes from outside to inside.Then,the corresponding mechanical simulation methods are organized considering multiple impact factors to realize minimally invasive implantation.Finally,the technical difficulties and future trends of mechanical modeling are discussed for the next-generation flexible neural probes,which is critical to realize low-invasiveness and long-term coexistence in vivo.展开更多
The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. ...The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.展开更多
The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations ...The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which ...The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.展开更多
The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the ide...The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.展开更多
Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of fail...Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.展开更多
Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from e...Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from experiments based on a very flexible link which was fixed on a FANUC Robot S-Model 300 in our lab.Results and Conclusion The theoretical analysis and experiment results showed that this modelling scheme is more suitable for flexible systems with characteristics of fast changing dynamics, and also it can be more accurate than others and is more convenient for real-time use.展开更多
In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field h...In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.展开更多
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be...The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.展开更多
When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the...When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.展开更多
Due to the development of advanced manufacturing technology and the introduction of Smart Manufacturing notion in the field of modern industrial production, welding flexible manufacturing using robot technology has b...Due to the development of advanced manufacturing technology and the introduction of Smart Manufacturing notion in the field of modern industrial production, welding flexible manufacturing using robot technology has become the inevitable developing direction on welding automation. Based on a new intelligent arc welding flexible manufacturing cell (WFMC), its system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. A discrete control model of WFMC has been constructed, in which the system's status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into Petri net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real time control on welding flexible manufacturing cell and system.展开更多
Model based control schemes use the inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For model-based controller one is required to know the model parameters acc...Model based control schemes use the inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For model-based controller one is required to know the model parameters accurately. This is a very difficult task especially if the manipulator is flexible. So a reduced model based controller has been developed, which requires only the information of space robot base velocity and link parameters. The flexible link is modeled as Euler Bernoulli beam. To simplify the analysis we have considered Jacobian of rigid manipulator. Bond graph modeling is used to model the dynamics of the system and to devise the control strategy. The scheme has been verified using simulation for two links flexible space manipulator.展开更多
The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characte...The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characteristics of mixed rigid and flexiblestructure. By using the singular perturbation approach (SPA), the model of the mechanism can beseparated into slow and fast subsystems. Based on the feedback linearization theory and inputshaping technique, the large scale rigid motion controller and the flexible link vibrationcontroller can be designed separately to achieve fast and accurate positioning of the PM.展开更多
The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with...The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.展开更多
A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of th...Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was go...In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.展开更多
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous tra...The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.展开更多
基金support received from the National Natural Science Foundation of China(GrantNos.62204204 and 52175148)Science and Technology Innovation 2030-Major Project(Grant No.2022ZD0208601)+1 种基金Shanghai Sailing Program(Grant No.21YF1451000)Presidential Foundation of CAEP(Grant No.YZJJZQ2022001).
文摘Implanted neural probes can detect weak discharges of neurons in the brain by piercing soft brain tissue,thus as important tools for brain science research,as well as diagnosis and treatment of brain diseases.However,the rigid neural probes,such as Utah arrays,Michigan probes,and metal microfilament electrodes,are mechanically unmatched with brain tissue and are prone to rejection and glial scarring after implantation,which leads to a significant degradation in the signal quality with the implantation time.In recent years,flexible neural electrodes are rapidly developed with less damage to biological tissues,excellent biocompatibility,and mechanical compliance to alleviate scarring.Among them,the mechanical modeling is important for the optimization of the structure and the implantation process.In this review,the theoretical calculation of the flexible neural probes is firstly summarized with the processes of buckling,insertion,and relative interaction with soft brain tissue for flexible probes from outside to inside.Then,the corresponding mechanical simulation methods are organized considering multiple impact factors to realize minimally invasive implantation.Finally,the technical difficulties and future trends of mechanical modeling are discussed for the next-generation flexible neural probes,which is critical to realize low-invasiveness and long-term coexistence in vivo.
文摘The influence of the flexible body for the motion of gear transmission system is analyzed and the foundation for a more accurate assessment of gear transmission system is established when it has battle damage faults. By using Pro / E software,the virtual prototype model of gear transmission system in the speed reducer is established,and the rigid model and rigid-flexible coupling model are simulated respectively in ADAMS to obtain the data of gear meshing force. It can be concluded that rigid-flexible coupling model can reflect the real motion better than rigid model by comparing the simulation data of two models.
文摘The rigid flexible coupling system with a mass at non-tip position of the flexible beam is studied in this paper. Using the theory about mechanics problems in a non-inertial coordinate sys- tem, the dynamic equations of the rigid flexible coupling system with dynamic stiffening are estab- lished. It is clearly elucidated for the first time that, dynamic stiffening is produced by the coupling effect of the centrifugal inertial load distributed on the beam and the transverse vibration deformation of the beam. The modeling approach in this paper successfully solves problems of popular modeling methods nowadays: the derivation process is too complex by using only one dynamic principle; a clearly theoretical mechanism for dynamic stiffening can' t be offered. First, the mass at non-tip po- sition is incorporated into the continuous dynamic equations of the system by use of the Dirac lunch tion and the Heaviside function. Then, based on the conclusions of orthogonalization about the nor- mal constrained modes, the finite dimensional state space equations suitable for controller design are obtained. The numerical simulation results show that: dynamic stiffening is included in the first-or- der model established in this paper, which indicates the dynamic responses of the rigid flexible cou- pling system with large overall motion accurately. The results also show that the mass has a soften- ing effect on the dynamic behavior of the flexible beam, and the effect would be more obvious when the mass has a larger mass, or lies closer to the tip of the beam.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
文摘The dynamics of a coupled rigid-flexible rocket launcher is reported. The coupled rigid-flexible rocket launcher is divided into two subsystems, one is a system of rigid bodies, the other a flexible launch tube which can undergo large overall motions spatially. First, the mathematical models for these two subsystems were established respectively. Then the dynamic model for the whole system was obtained by considering the coupling effect between these two subsystems. The approach, which divides a complex system into several simple subsystems first and then obtains the dynamic model for the whole system via combining the existing dynamic models for simple subsystems, can make the modeling procedure efficient and convenient.
文摘The influences of nonlinear centrifugal force to large overall attitude motion of coupled rigid-flexible system was investigated. First the nonlinear model of the coupled rigid-flexible system was deduced from the idea of “centrifugal potential field', and then the dynamic effects of the nonlinear centrifugal force to system attitude motion were analyzed by approximate calculation; At last, the Lyapunov function based on energy norm was selected, in the condition that only the measured values of attitude and attitude speed are available, and it is proved that the PD feedback control law can ensure the attitude stability during large angle maneuver.
文摘Correct predictions of the behavior of flexible bodies undergoing large rigid-body motions and small elastic vibrations is a subject of major concern in the field of flexible multibody system dynamics. Because of failing to account for the effects of dynamic stiffening, conventional methods based on the linear theories can lead to erroneous results in many practical applications. In this paper, the idea of 'centrifugal potential field', which induced by large overall rotation is introduced, and the motion equation of a coupled rigid-flexible system by employing Hamilton's principle is established. Based on this equation, first it is proved that the elastic motion of the system has periodic property, then by using Frobenius' method its exact solution is obtained. The influences of large overall rigid motion on the elastic vibration mode shape and frequency are analysed through the numerical examples.
文摘Aim To propose a modelling method for flexible manipulators. Methods The improved algorithm and structure of the ANN (artificial neural networks) were used. All of the data used in the process of modelling came from experiments based on a very flexible link which was fixed on a FANUC Robot S-Model 300 in our lab.Results and Conclusion The theoretical analysis and experiment results showed that this modelling scheme is more suitable for flexible systems with characteristics of fast changing dynamics, and also it can be more accurate than others and is more convenient for real-time use.
文摘In this paper,an analytical model that represents the streamwise velocity distribution for open channel flow with submerged flexible vegetation is studied.In the present vegetated flow modelling,the whole flow field has been separated into two layers vertically: a vegetated layer and a non-vegetated free-water layer.Within the vegetated layer,an analysis of the mechanisms affecting water flow through flexible vegetation has been conducted.In the non-vegetated layer,a modified log-law equation that represents the velocity profile varying with vegetation height has been investigated.Based on the studied analytical model,a sensitivity analysis has been conducted to assess the influences of the drag (CD) and friction (Cf ) coefficients on the flow velocity.The investigated ranges of CD and Cf have also been compared to published values.The findings suggest that the CD and Cf values are non-constant at different depths and vegetation densities,unlike the constant values commonly suggested in literature.This phenomenon is particularly clear for flows with flexible vegetation,which is characterised by large deflection.
基金Projects(2014QNB18,2015XKMS022)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(51475456,51575511)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Priority Academic Programme Development of Jiangsu Higher Education InstitutionsProject supported by the Visiting Scholar Foundation of China Scholarship Council
文摘The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.
基金supported by the National Natural Science Foundation of China(U1134201 and 51175032)the National Hitech Research and Development Program of China(973 Program)(211CD71104)
文摘When the operation speed of the high-speed train increases and the weight of the carbody becomes lighter,not only does the sensitivity of the wheel/rail contact get higher,but also the vibration frequency range of the vehicle system gets enlarged and more frequencies are transmitted from the wheelset to the carbody.It is important to investigate the vibration characteristics and the dynamic frequency transmission from the wheel/rail interface to the carbody of the high-speed electric multi-uint(EMU).An elastic highspeed vehicle dynamics model is established in which the carbody,bogieframes,and wheelsets are all dealt with as flexible body.A rigid high-speed vehicle dynamics model is set up to compare with the simulation results of the elastic model.In the rigid vehicle model,the carbody,bogieframes and wheelsets are treated as rigid component while the suspension and structure parameters are the same as used in the elastic model.The dynamic characteristic of the elastic high speed vehicle is investigated in time and frequency domains and the di ff erence of the acceleration,frequency distribution and transmission of the two types of models are presented.The results show that the spectrum power density of the vehicle decreases from the wheelset to the carbody and the acceleration transmission ratio is approximately from 1%to 10%for each suspension system.The frequency of the wheelset rotation is evident in the vibration of the flexible model and is transmitted from the wheelset to the bogieframe and to thecarbody.The results of the flexible model are more reasonable than that of the rigid model.A field test data of the high speed train are presented to verify the simulation results.It shows that the simulation results are coincident with the field test data.
基金SupportedbyNationalNaturalScienceFoundationofChina (No .5 96 35 16 0 )Pre ResearchingKeyProjectoNationalDefenseTechnology
文摘Due to the development of advanced manufacturing technology and the introduction of Smart Manufacturing notion in the field of modern industrial production, welding flexible manufacturing using robot technology has become the inevitable developing direction on welding automation. Based on a new intelligent arc welding flexible manufacturing cell (WFMC), its system structure and control policies are studied in this paper. Aiming at the different information flows among every subsystem and central monitoring computer in this WFMC, Petri net theory is introduced into the process of welding manufacturing. A discrete control model of WFMC has been constructed, in which the system's status is regarded as place and the control process is regarded as transition. Moreover, grounded on automation Petri net principle, the judging and utilizing of information obtained from welding sensors are imported into Petri net structure, which extends the traditional Petri net concepts. The control model and policies researched in this paper have established foundation for further intelligent real time control on welding flexible manufacturing cell and system.
文摘Model based control schemes use the inverse dynamics of the robot arm to produce the main torque component necessary for trajectory tracking. For model-based controller one is required to know the model parameters accurately. This is a very difficult task especially if the manipulator is flexible. So a reduced model based controller has been developed, which requires only the information of space robot base velocity and link parameters. The flexible link is modeled as Euler Bernoulli beam. To simplify the analysis we have considered Jacobian of rigid manipulator. Bond graph modeling is used to model the dynamics of the system and to devise the control strategy. The scheme has been verified using simulation for two links flexible space manipulator.
基金This project is supported by National Natural Science Foundation of China (No.50390064, No.50375099) Doctorate Foundation of Ministry of Education of China(No.20020248048).
文摘The object of study is about dynamic modeling and control for a 2degree-of-freedom (DOF) planar parallel mechanism (PM) with flexible links. The kinematic anddynamic equations are established according to the characteristics of mixed rigid and flexiblestructure. By using the singular perturbation approach (SPA), the model of the mechanism can beseparated into slow and fast subsystems. Based on the feedback linearization theory and inputshaping technique, the large scale rigid motion controller and the flexible link vibrationcontroller can be designed separately to achieve fast and accurate positioning of the PM.
基金This work was supported by the National Natural Science Foundation of China(Grants 11702146,11732006 and 11827801)the Equipment Pre-research Foundation(Grant 6140210010202).
文摘The paper investigated the equivalent continuum modeling of beam-like repetitive truss structures considering the flexibility of joints,which models the contact between the truss member and joint by spring-damper with six directional stiffnesses and dampings.Firstly,a two-node hybrid joint-beam element was derived for modeling the truss member with flexible end joints,and a condensed model for the repeating element with flexible joints was obtained.Then,the energy equivalence method was adopted to equivalently model the truss structure with flexible joints and material damping as a spatial viscoelastic anisotropic beam model.Afterwards,the equations of motion for the equivalent beam model were derived and solved analytically in the frequency domain.In the numerical studies,the correctness of the presented method was verified by comparisons of the natural frequencies and frequency responses evaluated by the equivalent beam model with the results of the finite element method model.
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Supported by National Natural Science Foundation of China (Grant No.11672127)Innovative Science and Technology Platform Project of Cooperation between Yangzhou City and Yangzhou University of China (Grant No.YZ2020266)+3 种基金Advance Research Special Technology Project of Army Equipment of China (Grant No.AGA19001)Innovation Fund Project of China Aerospace 1st Academy (Grant No.CHC20001)Fundamental Research Funds for the Central Universities of China (Grant No.NP2022408)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China (Grant No.SJCX23_1903)。
文摘Enhancing ride comfort has always constituted a crucial focus in the design and research of modern tracked vehicles,heavily reliant on the driving system's performance.While the road wheel is a key component of the driving system,traditional road wheels predominantly adopt a solid structure,exhibiting subpar adhesion performance and damping effects,thereby falling short of meeting the demands for high-speed,stable,and long-distance driving in tracked vehicles.Addressing this issue,this paper proposes a novel type of flexible road wheel(FRW)characterized by a catenary construction.The study investigates the ride comfort of tracked vehicles equipped with flexible road wheels by integrating finite element and vehicle dynamic.First,three-dimensional(3D)finite element(FE)models of both flexible and rigid road wheels are established,considering material and contact nonlinearities.These models are validated through a wheel radial loading test.Based on the validated FE model,the paper uncovers the relationship between load and radial deformation of the road wheel,forming the basis for a nonlinear mathematical model.Subsequently,a half-car model of a tracked vehicle with seven degrees of freedom is established using Newton's second law.A random road model,considering the track effect and employing white noise,is constructed.The study concludes by examining the ride comfort of tracked vehicles equipped with flexible and rigid road wheels under various speeds and road grades.The results demonstrate that,in comparison to the rigid road wheel(RRW),the flexible road wheel enhances the ride comfort of tracked vehicles on randomly uneven roads.This research provides a theoretical foundation for the implementation of flexible road wheels in tracked vehicles.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
基金Key Laboratory of Fundamental Science for National Defense,China(No. HIT. KLOF. 2009058)
文摘In order to present a dynamic analysis method for the rigid-flexible coupled bar linkage system(RFCBLS),the flexible element motion equation was gotten by Lagrange Equation and the rigid element motion equation was gotten based on rigid constraint conditions.The multi-body system(MBS) is a complex mechanism and its components have quite different rigidities.If it is considered as a rigid MBS(RMBS) to do its dynamic analysis,elastic deformation's ignorance will lead to inaccurate analysis.If it is considered as a flexible MBS(FMBS) to establish,analyze,and solve the model,quite large system equations make it difficult to solve.The better method is as follows:the complex mechanism system is regarded as a rigid-flexible coupled system(RFCS) to make dynamic characteristic of rigid components be equivalent,system equation is established by FMBS' way,and system equation dimensions are reduced by transition matrices' introduction.A dynamic analysis method for rigid element and flexible element coupling was presented based on the FMBS.The analyzed crank slide-block mechanism results show that the dynamic analysis method for RFCBLS is quick and convenient.
基金supported by the National Natural Science Foundation of China (No. 10772085)the Natural Science Foundation of Jiangsu Province (No. BK2007205)+1 种基金the Young Scholar Foundation of Nanjing University of Science and Technology (No. NJUST200504)the Qing Lan Project of Jiangsu Province
文摘The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.