Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is desi...Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.展开更多
In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of ro...In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy.展开更多
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl...Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.展开更多
Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculat...Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.展开更多
In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carr...In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.展开更多
The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed ...The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.展开更多
The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 4...The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of ?2.3。, wind speeds of 10, 15, 24 m/s and yaw angles of 15。, 30。 and 45。. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm, a pitch angle of 3。, a wind speed of 5 m/s and yaw angles of 10。and 30。. The computed loads are compared to the loads measured from pressure measurement.展开更多
Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or...Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.展开更多
The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor an...The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor and the small-sized rear wind rotor drive, as for the upwind type, the inner and the outer rotational armatures, respectively, in keeping the rotational torque counter-balanced between both wind rotors/armatures. The unique rotational behaviors of the tandem wind rotors and the fundamental performances of the unit have been discussed at the previous paper. Continuously, this paper investigates experimentally and numerically the flow condition around the wind rotors to know the flow interactions between the front and the rear wind rotors, and optimizes the blade profile in the front wind rotor. The front blade should work fruitfully at the larger radius and had better not work at the smaller radius for giving plenty of wind energy to the rear wind rotor, taking account of the flow interaction between both wind rotors.展开更多
Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of...Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.展开更多
Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. ...Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.展开更多
The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the ef...The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.展开更多
The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance...The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.展开更多
1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successful...1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between展开更多
基金supports from National Science Foundation of China(Grant No.51777121).
文摘Aiming at the fact that the rotor winding inter-turn weak faults can hardly be detected due to the strong electromagnetic coupling effect in the excitation system,an interval observer based on current residual is designed.Firstly,the mechanism of the inter-turn short circuit of the rotor winding in the excitation system is modeled under the premise of stable working conditions,and electromagnetic decoupling and system simplification are carried out through Park Transform.An interval observer is designed based on the current residual in the two-phase coordinate system,and the sensitive and stable conditions of the observer is preset.The fault diagnosis process based on the interval observer is formulated,and the observer gain matrix is convexly optimized by linear matrix inequality.The numerical simulation and experimental results show that the inter-turn short circuit weak fault is hardly detected directly through the current signal,but the fault is quickly and accurately diagnosed through the residual internal observer.Compared with the traditional fault diagnosis method based on excitation current,the diagnosis speed and accuracy are greatly improved,and the probability of misdiagnosis also decreases.This method provides a theoretical basis for weak fault identification of excitation systems,and is of great significance for the operation and maintenance of excitation systems.
基金The authors highly acknowledge the technology financial assistance provided by Jiangsu Frontier Electric Technology Co.,Ltd.(KJ202003).
文摘In order to solve the problems of rotor overvoltage,overcurrent and DC side voltage rise caused by grid voltage drops,a coordinated control strategy based on symmetrical and asymmetrical low voltage ride through of rotor side converter of the doubly-fed generator is proposed.When the power grid voltage drops symmetrically,the generator approximate equation under steady-state conditions is no longer applicable.Considering the dynamic process of stator current excitation,according to the change of stator flux and the depth of voltage drop,the system can dynamically provide reactive power support for parallel nodes and suppress the rise of DC side voltage and rotor over-current.When the grid voltage drops asymmetrically,the positive and negative sequence components are separated in the rotating coordinate system.The doubly fed generator model is established to suppress the rotor positive sequence current and negative sequence current respectively.At the same time,the output voltage limit of the converter is discussed,and the reference value is adjusted within the allowable output voltage range.In order to adapt to the occurrence of different types of power grid faults and complex operating conditions,a fast switching module of fault type detection and rotor control mode is designed to detect the type of power grid faults and voltage drop depth in real time and switch the rotor side control mode dynamically.Finally,the simulation model of the doubly fed wind turbine is constructed in Matlab/Simulink.The simulation results verify that the proposed control strategy can improve the low-voltage ride through performance of the system when dealing with the symmetrical and asymmetric voltage drop of the power grid and identify the power grid fault type and provide the correct control strategy.
基金supported by the University Outstanding Youth Researcher Support Program of the Education Department of Anhui Province,the National Natural Science Foundation of China(Grant Nos.11902002 and 51705002)the Sichuan Provincial Natural Science Foundation(Grant No.2022NSFSC0275)+1 种基金the Science and Technology Research Project of Chongqing Municipal Education Commission(Grant No.KJQN201901146)the Special Key Project of Technological Innovation and Application Development in Chongqing(Grant No.cstc2020jscx-dxwtBX0048).
文摘Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little.
文摘Based on the multi-loop method, the rotating torque and speed of theinduction machine are analyzed. The fluctuating components of the torque and speed caused by rotorwinding faults are studied. The models for calculating the fluctuating components are put forward.Simulation and computation results show that the rotor winding faults will cause electromagnetictorque and rotating speed to fluctuate; and fluctuating frequencies are the same and their magnitudewill increase with the rise of the severity of the faults. The load inertia affects the torque andspeed fluctuation, with the increase of inertia, the fluctuation of the torque will rise, while thecorresponding speed fluctuation will obviously decline.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.
基金supported by the National Key R&D Program of China“Response-driven intelligent enhanced analysis and control for bulk power system stability”(No.2021YFB2400800)。
文摘The equivalent simplification of large wind farms is essential for evaluating the safety of power systems.However,sub-synchronous oscillations can significantly affect the stability of power systems.Although detailed mathematical models of wind farms can help accurately analyze the oscillation mechanism,the solution process is complicated and may lead to problems such as the“dimensional disaster.”Therefore,this paper proposes a sub-synchronous frequency domain-equivalent modeling method for wind farms based on the nature of the equivalent resistance of the rotor,in order to analyze sub-synchronous oscillations accurately.To this end,Matlab/Simulink is used to simulate a detailed model,a single-unit model,and an equivalent model,considering a wind farm as an example.A simulation analysis is then performed under the sub-synchronous frequency to prove that the model is effective and that the wind farm equivalence model method is valid.
文摘The Actuator Line/Navier-Stokes model is validated against wind tunnel measurements for flows past the yawed MEXICO rotor and past the yawed NREL Phase VI rotor. The MEXICO rotor is operated at a rotational speed of 424 rpm, a pitch angle of ?2.3。, wind speeds of 10, 15, 24 m/s and yaw angles of 15。, 30。 and 45。. The computed loads as well as the velocity field behind the yawed MEXICO rotor are compared to the detailed pressure and PIV measurements which were carried out in the EU funded MEXICO project. For the NREL Phase VI rotor, computations were carried out at a rotational speed of 90.2 rpm, a pitch angle of 3。, a wind speed of 5 m/s and yaw angles of 10。and 30。. The computed loads are compared to the loads measured from pressure measurement.
基金This project is supported by Provincial Science Foundation of Education Office of Hebei(No.Z2004455)Youth Research Fundation of State Power of China(No.SPQKJ02-10).
文摘Rotor vibration characteristics are first analyzed, which are that the rotor vibration of fundamental frequency will increase due to rotor winding inter-turn short circuit fault, air-gap dynamic eccentricity fault, or imbalance fault, and the vibration of the second frequency will increase when the air-gap static eccentricity fault occurs. Next, the characteristics of the stator winding parallel branches circulating current are analyzed, which are that the second harmonics circulating current will increase when the rotor winding inter-turn short circuit fault occurs, and the fundamental circulating current will increase when the air-gap eccentricity fault occurs, neither being strongly affected by the imbalance fault. Considering the differences of the rotor vibration and circulating current characteristics caused by different rotor faults, a method of generator vibration fault diagnosis, based on rotor vibration and circulating current characteristics, is developed. Finally, the rotor vibration and circulating current of a type SDF-9 generator is measured in the laboratory to verify the theoretical analysis presented above.
文摘The authors have invented the superior wind power unit, which is composed of the tandem wind rotors and the double rotational armature type generator without the traditional stator. The large-sized front wind rotor and the small-sized rear wind rotor drive, as for the upwind type, the inner and the outer rotational armatures, respectively, in keeping the rotational torque counter-balanced between both wind rotors/armatures. The unique rotational behaviors of the tandem wind rotors and the fundamental performances of the unit have been discussed at the previous paper. Continuously, this paper investigates experimentally and numerically the flow condition around the wind rotors to know the flow interactions between the front and the rear wind rotors, and optimizes the blade profile in the front wind rotor. The front blade should work fruitfully at the larger radius and had better not work at the smaller radius for giving plenty of wind energy to the rear wind rotor, taking account of the flow interaction between both wind rotors.
基金supported by the National Natural Science Foundation of China(U22A20215 and 51537007)the Natural Science Foundation of LiaoNing Province(2021-YQ-09).
文摘Due to the harsh actual operating environment of the permanent magnet wind turbine,it is easy to break down and difficult to monitor.Therefore,the electromagnetic characteristics identification of major fault types of large-scale permanent magnet wind turbines is studied in this paper.The typical faults of rotor eccentricity,stator winding short circuit and permanent magnet demagnetization of permanent magnet wind turbines are analyzed theoretically.The wavelet analysis algorithm is used to decompose and reconstruct the abnormal electromagnetic signal waveform band,and the characteristic frequency of the electromagnetic signal is obtained when the fault occurs.In order to verify the effectiveness of the proposed method,a 3.680MW permanent magnet wind turbine was taken as the research object.Its physical simulation model was established,and an external circuit was built to carry out field co-simulation.The results show that the motor fault type can be determined by detecting the change rule of fault characteristic frequency in the spectrum diagram,and the electromagnetic characteristic analysis can be applied to the early monitoring of the permanent magnet wind turbine fault.
文摘Rotor winding turn-to-turn short circuit is a common electrical fault in steam turbines. When turn-to-turn short circuit fault happens to rotor winding of the generator, the generator terminal parameters will change. According to these parameters, the conditions of the rotor winding can be reflected. However, it is hard to express the relations between fault information and generator terminal parameters in accurate mathematical formula. The satisfactory results in fault diagnosis can be obtained by the application of neural network. In general, the information about the severity level of the generator faults can be acquired directly when the faulty samples are found in the training samples of neural network. However, the faulty samples are difficult to acquire in practice. In this paper, the relations among active power, reactive power and excitation current are discovered by analyzing the generator mmf with terminal voltage constant. Depending on these relations, a novel diagnosis method of generator rotor winding turn-to-turn short circuit fault is proposed by using ANN method to obtain the fault samples directly, without destructive tests.
基金This research was funded by Dongfang Electric Machinery Co., Ltd.
文摘The shrink fit retaining ring is currently the easiest to install and the most widely used end fixed for structure AC excitation variable speed generator-motor rotor end windings.However,the current research on the effect of high strength sealing on the ventilation and heat dissipation performance of the end is not enough.In this paper,based on the actual structural parameters and periodic symmetry simplification,the three-dimensional coupled calculation model of fluid field and temperature field is established.After solving the fluid and thermal equations,the influence of the length of rotor support block,the height of rotor support block,and the number of rotor support block on the fluid flow and temperature distribution in the rotor end region of generator-motor is studied using the finite volume method.The rheological characteristics of the air in the rotor domain,such as velocity and inter-winding flow,are analyzed.The law of temperature variation with local structure in the computational domain is studied.The variation law of cooling medium performance inside the large variable speed power generator motor is revealed.
文摘The principal objective of this work was to investigate the 3D flow field around a multi-bladed horizontal axis wind turbine (HAWT) rotor and to investigate its performance characteristics. The aerodynamic performance of this novel rotor design was evaluated by means of a Computational Fluid Dynamics commercial package. The Reynolds Averaged Navier-Stokes (RANS) equations were selected to model the physics of the incompressible Newtonian fluid around the blades. The Shear Stress Transport (SST) <em>k</em>-<em>ω</em> turbulence model was chosen for the assessment of the 3D flow behavior as it had widely used in other HAWT studies. The pressure-based simulation was done on a model representing one-ninth of the rotor using a 40-degree periodicity in a single moving reference frame system. Analyzing the wake flow behavior over a wide range of wind speeds provided a clear vision of this novel rotor configuration. From the analysis, it was determined that the flow becomes accelerated in outer wake region downstream of the rotor and by placing a multi-bladed rotor with a larger diameter behind the forward rotor resulted in an acceleration of this wake flow which resulted in an increase the overall power output of the wind machine.
文摘1. An Overview of Manufacture and Operation A turbine generator utilizing a new technology of electrical machinery industry, i.e. the windings of its stator and rotor all being inner water-cooled, was first successfully created in China and was known afterwards as a turbine generator with watercooled stator and rotor windings (Abbrev, TGWSR). The teachers from Zhejiang University came to Shanghai between