The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- serve...The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- served duct can increase the pre-stress of the main beam effectively, and decrease the long term span deflection in order to improve the performance of the girder. At the same time, the proper tension position is very crucial to optimise the stress distribution of the bridge and control the deflection increase. Combining with practical en- gineering, the authors analyze the influence of different positions of post-tension tendon ( including top-, web- and bottom plate tendons) on the stress and deflection of the main beam, and find out the optimal position of post tendon.展开更多
With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more s...With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.展开更多
In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into ...In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The high- speed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.展开更多
The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculat...The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.展开更多
Seismic ground motions of two neighboring mountains and the free surface between them are calculated under the SV seismic waves with three different incident angles. The results are then taken as the inputs of multi-p...Seismic ground motions of two neighboring mountains and the free surface between them are calculated under the SV seismic waves with three different incident angles. The results are then taken as the inputs of multi-point seismic excitations for the foundation of a long-span bridge built over the valley in the analysis considering the integrated influence of traveling wave and topography. On the basis of a dynamic analytical method, a finite element model is created for the seismic responses of a four-span rigid-frame bridge of 440 m. The pier-top displacement and the pier-bottom internal force of the bridge are calculated. Then the results are compared with those considering traveling-wave effect only. The conclusions can serve as a seismic design reference for the structures located on the complex mountain topography.展开更多
The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the ...The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the soft soil foundation. After the dynamic characteristics are calculated in terms of natural frequencies and modes, the seismic analysis is carried out using the modal response spectrum method and the time-history method, respectively. Based on the calculated results, the reasonable design values are finally suggested as the basis of the seismic design of the bridge, and meanwhile the problems encountered were also analyzed. Finally, some conclusions are drawn as: 1) Despite the superiority of rigid-framed prestressed concrete bridge, the upper and lower ends of the piers of the bridge are proved to be the crucial parts of the bridge, which are easily destroyed under designed earthquake excitations and should be carefully analyzed and designed; 2) The soft soil foundation can possibly result in rather weakening of the lateral rigidity of the rigid-framed bridge, and should be paid considerable attention; 3) The modal response spectrum method, combined with time-history method, is suggested for the seismic analysis in engineering design of the rigid-framed prestressed concrete bridge.展开更多
Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and ...Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.展开更多
Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of ...Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.展开更多
In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for weld...In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.展开更多
This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Gra...This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Graded Materials(FGMs),which may improve the stability behavior of the tunnel-liner system.Hydrostatic pressure is inevitable in the liner since underground water may penetrate the cracks of the tunnel,and reach the outer surface of the liner.In addition,an elevated temperature loading is taken into account,considering that fire may occur in the tunnel-liner system.Under the combination of mechanical loading and thermal loading,the liner deforms into a single-lobe shape,which is depicted by a trigonometric function.The total potential energy is expressed quantitatively after the energy approach and thin-walled shell theory are used.The minimum potential energy is obtained when the critical buckling occurs.The critical buckling pressure is calculated,which considers the effect of the thermal field.The present analytical prediction is subsequently compared precisely with other closed-form solutions.Finally,the effects of several parameters,such as the geometric shapes,temperature variations,and volume fraction indices,are discussed to further survey the buckling performance of the nonlinear buckling of an FGM polyhedral liner with an inverted arch.One may address a polyhedral liner with fewer polyhedral sides,and a lower volume fraction index is recommended to rehabilitate cracked tunnels in engineering applications.展开更多
BACKGROUND This work explored the effects of cognitive behavior therapy(CBT)-based comprehensive nursing intervention(CNI)mode in arch expansion to treat patients with orthodontic osteodilated arch(OOA).AIM To explore...BACKGROUND This work explored the effects of cognitive behavior therapy(CBT)-based comprehensive nursing intervention(CNI)mode in arch expansion to treat patients with orthodontic osteodilated arch(OOA).AIM To explore the application effect of CBT-based CNI model in orthodontic expansion arch treatment.METHODS Using convenient sampling method,81 patients with OOA were selected and rolled into a control group(Ctrl group,40 cases)and an observation group(Obs group,41 cases).During the treatment,patients in the Ctrl group received routine nursing intervention mode,and the those in the Obs group received CBT mode on the basis of this.Before and after intervention,the incidence of oral mucositis,the mastery rate of correct arch expansion method,self-rating anxiety scale score,soft scale index,and plaque index were compared for patients in different groups.In addition,satisfaction and complications were comparatively analyzed.RESULTS Incidence of oral mucositis in the Obs group was lower(14.6%vs 38.5%),and the mastery rate of correct arch expansion method was obviously higher(90.2%vs 55.0%)was obviously higher(all P<0.05).Meanwhile,the soft scale index and plaque index in the Obs group were much lower(P<0.05).The compliance(90.24%)and satisfaction(95.12%)in the Obs group were greatly higher(P<0.05).CONCLUSION The CBT-based CNI mode greatly improved the mastery rate of correct arch expansion method during arch expansion in treating patients with OOA and enhanced the therapeutic effect of arch expansion and the oral health of patients,improving the patient compliance.展开更多
文摘The problems like cracking of the girder in the mid-span and the ever-increasing vertical deflection appear during the long term usage of the long-span continuous rigid-flame bridge. Post-tension tendon with re- served duct can increase the pre-stress of the main beam effectively, and decrease the long term span deflection in order to improve the performance of the girder. At the same time, the proper tension position is very crucial to optimise the stress distribution of the bridge and control the deflection increase. Combining with practical en- gineering, the authors analyze the influence of different positions of post-tension tendon ( including top-, web- and bottom plate tendons) on the stress and deflection of the main beam, and find out the optimal position of post tendon.
文摘With the current rapid development of urbanization in China,people's living standards have been greatly improved.In the context of such a development background,the requirements for road traffic are getting more stringent,especially for bridge projects.The arched continuous rigid-frame bridge was developed under this social background.The advantage of the bridge lies in the design of a bridge model that integrates various functions such as transportation,landscape,and sightseeing.Based on the above,this paper first refers to the case to analyze the design and construction strategy of the arched continuous rigid-frame bridge,in hope of providing a valuable reference for relevant personnel.
文摘2019年发表的全球ARCHES试验(NCT02677896)结果显示,与安慰剂(placebo,PBO)+雄激素剥夺治疗(androgen deprivation therapy,ADT)相比,恩扎卢胺+ADT延长了转移性激素敏感性前列腺癌(metastatic hormone-sensitive prostate cancer,mHSPC)患者的总生存期和放射影像学无进展生存期(radiographic progression-free survival,rPFS)^([1])。然而,该试验无中国患者入组。欧洲肿瘤内科学会(European Society for Medical Oncology,ESMO)2023年会议报道了中国ARCHES研究(NCT04076059)的初步结果,这是一项评估恩扎卢胺+ADTvs.PBO+ADT在中国m HSPC患者中的疗效和安全性的多中心、随机、双盲、PBO对照的Ⅲ期试验^([2])。
基金Doctoral Scientific Research Startup Foundation of Wuhan University of Technology,China(No.40120246)Hubei Key Laboratory of Roadway Bridge and Structure Engineering(Wuhan University of Technology)(No.DQJJ201505)
文摘In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The high- speed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.
基金Project(2008047B) supported by the Funds for Youth of Control South University of Forestry and Technology
文摘The effect of concrete creep on the pre-camber of a long-span pre-stressed concrete continuous rigid-frame bridge constructed by cantilever casting method was investigated.The difference of creep coefficients calculated with two Chinese codes was discussed.Based on the calculations,the pre-camber of a pre-stressed concrete continuous rigid-frame box bridge was computed for construction control purpose.The results show that the short-term creep coefficient and long-term creep coefficient calculated with the CC-1985 are larger than those calculated with the CC-2004,while the medium-term creep coefficient calculated with the CC-1985 is smaller than that calculated with the CC-2004.The difference of creep deformation calculated with these two codes is small,and the influences of concrete creep on the pre-camber for most of the segments are negligible.The deflections and stresses of the box girder measured during the construction stages agree very well with the predictions.
基金Key Project of Scientific and Technological Development Planning of Beijing Education Commission (kz200710009005)National Natural Science Foundation of China (50678001)
文摘Seismic ground motions of two neighboring mountains and the free surface between them are calculated under the SV seismic waves with three different incident angles. The results are then taken as the inputs of multi-point seismic excitations for the foundation of a long-span bridge built over the valley in the analysis considering the integrated influence of traveling wave and topography. On the basis of a dynamic analytical method, a finite element model is created for the seismic responses of a four-span rigid-frame bridge of 440 m. The pier-top displacement and the pier-bottom internal force of the bridge are calculated. Then the results are compared with those considering traveling-wave effect only. The conclusions can serve as a seismic design reference for the structures located on the complex mountain topography.
文摘The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the soft soil foundation. After the dynamic characteristics are calculated in terms of natural frequencies and modes, the seismic analysis is carried out using the modal response spectrum method and the time-history method, respectively. Based on the calculated results, the reasonable design values are finally suggested as the basis of the seismic design of the bridge, and meanwhile the problems encountered were also analyzed. Finally, some conclusions are drawn as: 1) Despite the superiority of rigid-framed prestressed concrete bridge, the upper and lower ends of the piers of the bridge are proved to be the crucial parts of the bridge, which are easily destroyed under designed earthquake excitations and should be carefully analyzed and designed; 2) The soft soil foundation can possibly result in rather weakening of the lateral rigidity of the rigid-framed bridge, and should be paid considerable attention; 3) The modal response spectrum method, combined with time-history method, is suggested for the seismic analysis in engineering design of the rigid-framed prestressed concrete bridge.
基金supported by the National Natural Science Foundation of China(Grant No.52079046).
文摘Currently,more than ten ultrahigh arch dams have been constructed or are being constructed in China.Safety control is essential to long-term operation of these dams.This study employed the flexibility coefficient and plastic complementary energy norm to assess the structural safety of arch dams.A comprehensive analysis was conducted,focusing on differences among conventional methods in characterizing the structural behavior of the Xiaowan arch dam in China.Subsequently,the spatiotemporal characteristics of the measured performance of the Xiaowan dam were explored,including periodicity,convergence,and time-effect characteristics.These findings revealed the governing mechanism of main factors.Furthermore,a heterogeneous spatial panel vector model was developed,considering both common factors and specific factors affecting the safety and performance of arch dams.This model aims to comprehensively illustrate spatial heterogeneity between the entire structure and local regions,introducing a specific effect quantity to characterize local deformation differences.Ultimately,the proposed model was applied to the Xiaowan arch dam,accurately quantifying the spatiotemporal heterogeneity of dam performance.Additionally,the spatiotemporal distri-bution characteristics of environmental load effects on different parts of the dam were reasonably interpreted.Validation of the model prediction enhances its credibility,leading to the formulation of health diagnosis criteria for future long-term operation of the Xiaowan dam.The findings not only enhance the predictive ability and timely control of ultrahigh arch dams'performance but also provide a crucial basis for assessing the effectiveness of engineering treatment measures.
基金financially supported by the Guangxi Key Research and Development Plan Program(AB22036007).
文摘Arch bridges provide significant technical and economic benefits under suitable conditions.In particular,concrete-filled steel tubular(CFST)arch bridges and steel-reinforced concrete(SRC)arch bridges are two types of arch bridges that have gained great economic competitiveness and span growth potential due to advancements in construction technology,engineering materials,and construction equipment over the past 30 years.Under the leadership of the author,two record-breaking arch bridges—that is,the Pingnan Third Bridge(a CFST arch bridge),with a span of 560 m,and the Tian’e Longtan Bridge(an SRC arch bridge),with a span of 600 m—have been built in the past five years,embodying great technological breakthroughs in the construction of these two types of arch bridges.This paper takes these two arch bridges as examples to systematically summarize the latest technological innovations and practices in the construction of CFST arch bridges and SRC arch bridges in China.The technological innovations of CFST arch bridges include cable-stayed fastening-hanging cantilevered assembly methods,new in-tube concrete materials,in-tube concrete pouring techniques,a novel thrust abutment foundation for nonrocky terrain,and measures to reduce the quantity of temporary facilities.The technological innovations of SRC arch bridges involve arch skeleton stiffness selection,the development of encasing concrete materials,encasing concrete pouring,arch rib stress mitigation,and longitudinal reinforcement optimization.To conclude,future research focuses and development directions for these two types of arch bridges are proposed.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52268048)the Guangxi Key Technology Research and Development Program(Grant No.GUI-KEAB23026101)the Guangxi Science and Technology Major Special Project(Grant No.GUI-KEAA22068066).
文摘In order to study the residual stress distribution law of welded joints of arch ribs of large-span steel pipe concrete arch bridges,numerical simulation of temperature,stress and strain fields based on ABAQUS for welded joints of arch-ribbed steel tubes using 7-,8-and 9-layer welds is carried out and its accuracy is demonstrated.The steel pipe welding temperature changes,residual stress distribution,different processes residual stress changes in the law,the prediction of post-weld residual stress distribution and deformation are studied in this paper.The results show that the temperature field values and test results are more consistent with the accuracy of numerical simulation of welding,the welding process is mainly in the form of heat transfer;Residual high stresses are predominantly distributed in the Fusion zone(FZ)and Heat-affected zone(HAZ),with residual stress levels tending to decrease from the center of the weld along the axial path,the maximum stress appears in the FZ and HAZ junction;The number of welding layers has an effect on the residual stress distribution,the number of welding layers increases,the residual stress tends to decrease,while the FZ and HAZ high stress area range shrinks;Increasing the number of plies will increase the amount of residual distortion.
基金supported by the Excellent Youth Foundation from the Department of Education,Hunan Province(Grant No.21B0533).
文摘This paper proposes an explicit scheme to analyze the failure of a subsea polyhedral tunnel-liner system with an inverted arch under mechanical loading and fire fields.The thin-walled liner is made of Functionally Graded Materials(FGMs),which may improve the stability behavior of the tunnel-liner system.Hydrostatic pressure is inevitable in the liner since underground water may penetrate the cracks of the tunnel,and reach the outer surface of the liner.In addition,an elevated temperature loading is taken into account,considering that fire may occur in the tunnel-liner system.Under the combination of mechanical loading and thermal loading,the liner deforms into a single-lobe shape,which is depicted by a trigonometric function.The total potential energy is expressed quantitatively after the energy approach and thin-walled shell theory are used.The minimum potential energy is obtained when the critical buckling occurs.The critical buckling pressure is calculated,which considers the effect of the thermal field.The present analytical prediction is subsequently compared precisely with other closed-form solutions.Finally,the effects of several parameters,such as the geometric shapes,temperature variations,and volume fraction indices,are discussed to further survey the buckling performance of the nonlinear buckling of an FGM polyhedral liner with an inverted arch.One may address a polyhedral liner with fewer polyhedral sides,and a lower volume fraction index is recommended to rehabilitate cracked tunnels in engineering applications.
基金The research was reviewed and approved by the Review Committee of Hospital of Chengdu University of Traditional Chinese Medicine(Approval No.NSH-23-319).
文摘BACKGROUND This work explored the effects of cognitive behavior therapy(CBT)-based comprehensive nursing intervention(CNI)mode in arch expansion to treat patients with orthodontic osteodilated arch(OOA).AIM To explore the application effect of CBT-based CNI model in orthodontic expansion arch treatment.METHODS Using convenient sampling method,81 patients with OOA were selected and rolled into a control group(Ctrl group,40 cases)and an observation group(Obs group,41 cases).During the treatment,patients in the Ctrl group received routine nursing intervention mode,and the those in the Obs group received CBT mode on the basis of this.Before and after intervention,the incidence of oral mucositis,the mastery rate of correct arch expansion method,self-rating anxiety scale score,soft scale index,and plaque index were compared for patients in different groups.In addition,satisfaction and complications were comparatively analyzed.RESULTS Incidence of oral mucositis in the Obs group was lower(14.6%vs 38.5%),and the mastery rate of correct arch expansion method was obviously higher(90.2%vs 55.0%)was obviously higher(all P<0.05).Meanwhile,the soft scale index and plaque index in the Obs group were much lower(P<0.05).The compliance(90.24%)and satisfaction(95.12%)in the Obs group were greatly higher(P<0.05).CONCLUSION The CBT-based CNI mode greatly improved the mastery rate of correct arch expansion method during arch expansion in treating patients with OOA and enhanced the therapeutic effect of arch expansion and the oral health of patients,improving the patient compliance.