The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis...The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.展开更多
Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may de...Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may delay the construction of major projects in the future. In this study, based on chemical stabilization of warm and icerich frozen ground, the soil-cement column(SCC) for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions. To explore the validity of countermeasures mentioned above, both the original foundation and the composite foundation consisting of SCC with soil temperature of -1.0℃ were prepared in the laboratory, and then the plate loading tests were carried out. The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation, and the total deformation of original foundation was greater than that of composite foundation, meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation. Meanwhile, a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation. The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load, and the applied load can be delivered to deeper zone in depth due to the SCC installation, which was favorable for improving the bearing characteristic of composite foundation. The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.展开更多
In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.Th...In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.展开更多
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and cos...The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.展开更多
Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both th...Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both the theoretical analysis and numerical simulation are employed to study the bearing capacity of CBF and the relationship between loads and ground deformation. Furthermore, monopile, high-rise pile cap, tripod and CBF designs are compared to analyze the bearing capacity and ground deformation, with a 3-MW wind generator as an example. The resuits indicate that CBF can effectively bear horizontal load and large bending moment resulting from upper structures and environmental load.展开更多
Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhanc...Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.展开更多
Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrificati...Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrification law of the composite foundation. Two different project cases with and without high-rise building adjacent to pile foundation were compared. The relationships of slope pile bending moment, earth pressure, pile top displacement and complex settlement with respect to time were obtained. 1) When there is no adjacent building, the displacement of supporting system caused by excavation is mainly in the horizontal direction; while when the adjacent building exists, the displacement of supporting system will be vertical. 2) When the excavation depth is less than or equal to the adjacent building's composite foundation depth, the force of supporting structure is uniform and has small value, at the same time, the pile strength is in fully use and the foundation is stable; while when the excavation depth is greater than the depth of adjacent building's composite foundation, the results will be opposite. 3) During the excavation process, the adjustment of the composite ground loads on the supporting structure is carried out downward and the force of the supporting structure is reduced through the deformation of the bearing layer.展开更多
Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unev...Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%−10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project.展开更多
Composite bucket foundation and one-step installation technology for offshore wind turbine are the integration of foundation construction,transportation and whole installation at sea.The cost of offshore wind turbine ...Composite bucket foundation and one-step installation technology for offshore wind turbine are the integration of foundation construction,transportation and whole installation at sea.The cost of offshore wind turbine construction and installation has been largely reduced.Foundation stability is the key technology in the process of towing transportation.Field observation data can reflect the real state of the foundation.In this paper,the influence of water depth and towing speed on liquid level,the compartment pressure,and the pitch angles during towing of composite bucket foundation are studied.These data are analyzed based on the field measurements data from a 3.3 MW offshore wind power project in China.The results show that with varied water depths and towing speeds,the compartment pressure changes are small during the bucket foundation towing process.The offshore wind turbine composite bucket foundation is stable while being towed in the ocean.展开更多
Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the ...Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.展开更多
In the design of wind turbine foundations for offshore wind farms, the wave load and run-up slamming on the supporting structure are the quantities that need to be considered. Because of a special arc transition, the ...In the design of wind turbine foundations for offshore wind farms, the wave load and run-up slamming on the supporting structure are the quantities that need to be considered. Because of a special arc transition, the interaction between the wave field and the composite bucket foundation(CBF) becomes complicated. In this study, the hydrodynamic characteristics, including wave pressure, load, upwelling, and run-up, around the arc transition of a CBF influenced by regular waves are investigated through physical tests at Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China. The distributions of the wave pressures and upwelling ratios around the CBF are described, and the relationship between the wave load and the wave parameters is discussed. New formulae based on the velocity stagnation head theory with linear wave theory and the second-order Stokes wave theory for wave kinematics are proposed to estimate the wave run-up. Moreover, the multiple regression method with nonlinear technology is employed to deduce an empirical formula for predicting run-up heights. Results show that the non-dimensional wave load increases with the increase in the values of the wave scattering parameter and relative wave height. The wave upwelling height is high in front of the CBF and has the lowest value at an angle of 135? with the incoming wave direction. The performance of the new formulae proposed in this study is compared using statistical indices to demonstrate that a good fit is obtained by the multiple regression method and the analytical model based on the velocity stagnation head theory is underdeveloped.展开更多
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on...With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.展开更多
The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was empl...The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.展开更多
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found...The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.展开更多
Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid dom...Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.展开更多
Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. ceme...Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.展开更多
The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which lead...The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which leads to larger support moments and longitudinal bending of raft compared with real values. The spring constitutive relation of composite foundation is obtained by the flat plate loading tests in Karst region. The interaction between the spring and the raft is equivalent to the interaction between the composite foundation and the raft. The model for superstructure-raft-composite foundation interaction analysis is thus established and the raft is designed. This method not only considers the nonlinear properties of composite foundation but also analyzes the influence of superstructure on bending moment and deformation of raft. Compared with the inverted floor method, the calculated values of moment become more reasonable and uneven settlements are considered. This can be references to the design of raft foundation in similar regions.展开更多
A series of 2D model tests were conducted to assess the foundation stability of composite vertical breakwaters. In this paper, the results from the experimental study are presented conjointly with a formula to estimat...A series of 2D model tests were conducted to assess the foundation stability of composite vertical breakwaters. In this paper, the results from the experimental study are presented conjointly with a formula to estimate the stability number of foundation, which is the most important parameter for evaluation of foundation stability of such structures. The influences of wave height, wave period and the berm width on the stability of compo^ite breakwaters with different armor stone sizes were investigated. Forty-five tests were performed to cover the influences of these parameters. According to the present research, berm width is a significant parameter concerning erosion of armor foundation. As the berm width increases, the amount of berm erosion decreases. Comparisons are made between results of present study and the estimated stability number proposed by Kimura et al. (1994), which is extension of Tanimoto formula. Results show that the later formula underestimates the stability number. However, by applying an enhancement factor about 1.7 meters to Kimura et al. formula, results correlated with the present experimental results..展开更多
Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as...Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.展开更多
This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed s...This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed stone grouting pile and rigid bearing plate was built by FEM program. The effects of replacement ratio of capping plate, replacement ratio of pile, replacement ratio of grout diffusion zone, pile-soil modulus ratio, and serous-soil modulus ratio, on the composite foundation settlement were discussed. It is concluded that the proposed crushed stone grouting pile with a rigid bearing plate is effective in decreasing the settlement of composite foundation.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.51878577 and 52378463)the Natural Science Foundation of Shandong Provincial,China(No.ZR2022ME042)the School-Enterprise Cooperation Program of China Railway 14th Bureau Group Co.(QTHT-HGLCHSD-00052)。
文摘The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.
基金supported by the National Natural Science Foundation of China (No. 41471062, No. 41971085, No. 41971086)。
文摘Affected by climate warming and anthropogenic disturbances, the thermo-mechanical stability of warm and ice-rich frozen ground along the Qinghai-Tibet engineering corridor(QTEC) is continuously decreased, which may delay the construction of major projects in the future. In this study, based on chemical stabilization of warm and icerich frozen ground, the soil-cement column(SCC) for ground improvement was recommended to reinforce the foundations in warm and ice-rich permafrost regions. To explore the validity of countermeasures mentioned above, both the original foundation and the composite foundation consisting of SCC with soil temperature of -1.0℃ were prepared in the laboratory, and then the plate loading tests were carried out. The laboratory investigations indicated that the bearing capacity of composite foundation consisting of SCC was higher than that of original foundation, and the total deformation of original foundation was greater than that of composite foundation, meaning that overall stability of foundation with warm and ice-rich frozen soil can be improved by SCC installation. Meanwhile, a numerical model considering the interface interaction between frozen soil and SCC was established for interpretating the bearing mechanism of composite foundation. The numerical investigations revealed that the SCC within composite foundation was responsible for the more applied load, and the applied load can be delivered to deeper zone in depth due to the SCC installation, which was favorable for improving the bearing characteristic of composite foundation. The investigations provide the valuable guideline for the choice of engineering supporting techniques to major projects within the QTEC.
基金The National Natural Science Foundation of China(No.51109160)the National High Technology Research and Development Program of China(863 Program)(No.2012AA051705)+1 种基金the International S&T Cooperation Program of China(No.2012DFA70490)the Natural Science Foundation of Tianjin(No.13JCQNJC06900,13JCYBJC19100)
文摘In order to study the towing dynamic properties of the large-scale composite bucket foundation the hydrodynamic software MOSES is used to simulate the dynamic motion of the foundation towed to the construction site.The MOSES model with the prototype size is established as the water draft of 5 and 6 m under the environmental conditions on site.The related factors such as towing force displacement towing accelerations in six degrees of freedom of the bucket foundation and air pressures inside the bucket are analyzed in detail.In addition the towing point and wave conditions are set as the critical factors to simulate the limit conditions of the stable dynamic characteristics.The results show that the large-scale composite bucket foundation with reasonable subdivisions inside the bucket has the satisfying floating stability.During the towing process the air pressures inside the bucket obviously change little and it is found that the towing point at the waterline is the most optimal choice.The characteristics of the foundation with the self-floating towing technique are competitive for saving lots of cost with few of the expensive types of equipment required during the towing transportation.
基金supported by the National Natural Science Foundation of China (No.51379142 and No.51679163)Innovation Method Fund of China (No.2016IM030100)the Tianjin Municipal Natural Science Foundation (No.17JCYBJC22000)
文摘The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.
文摘Based on mechanical characteristics such as large vertical load, large horizontal load, large bending moment and complex geological conditions, a large scale composite bucket foundation (CBF) is put forward. Both the theoretical analysis and numerical simulation are employed to study the bearing capacity of CBF and the relationship between loads and ground deformation. Furthermore, monopile, high-rise pile cap, tripod and CBF designs are compared to analyze the bearing capacity and ground deformation, with a 3-MW wind generator as an example. The resuits indicate that CBF can effectively bear horizontal load and large bending moment resulting from upper structures and environmental load.
基金Project (2006AA11Z104) supported by the National High-Tech Research and Development Program("863" Program)
文摘Based on the discussion about working mechanism of horizontal reinforcement and that of vertical reinforcement,respectively,the working mechanism of two-direction reinforced composite foundation was studied.The enhancing effect of horizontal reinforcement on vertical reinforced composite foundation was analyzed.A simplified calculation method for such two-direction reinforced working system was presented.A model experiment was carried out to validate the proposed method.In the experiment,geocell reinforcement worked as the horizontal reinforcement,while gravel pile composite foundation worked as the vertical reinforcement.The results show that the calculated curve is close to the measured one.The installation of geosynthetic reinforcement can increase the bearing capacity of composite foundation by nearly 68% at normal foundation settlement,which suggests that the enhancing effect by geosynthetic reinforcement should be taken into account in current design/analysis methods.
基金Project(41202220) supported by the National Natural Science Foundation of ChinaProject(20120022120003) supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2-9-2012-65) supported by the Fundamental Research Funds for the Central Universities,China
文摘Adjacent high-rise building with CFG pile composite foundation was studied using model test method to investigate stress and displacement of the foundation pile retaining structure, the subsidence and transmogrification law of the composite foundation. Two different project cases with and without high-rise building adjacent to pile foundation were compared. The relationships of slope pile bending moment, earth pressure, pile top displacement and complex settlement with respect to time were obtained. 1) When there is no adjacent building, the displacement of supporting system caused by excavation is mainly in the horizontal direction; while when the adjacent building exists, the displacement of supporting system will be vertical. 2) When the excavation depth is less than or equal to the adjacent building's composite foundation depth, the force of supporting structure is uniform and has small value, at the same time, the pile strength is in fully use and the foundation is stable; while when the excavation depth is greater than the depth of adjacent building's composite foundation, the results will be opposite. 3) During the excavation process, the adjustment of the composite ground loads on the supporting structure is carried out downward and the force of the supporting structure is reduced through the deformation of the bearing layer.
基金supported by the National Natural Science Foundation of China(Grant No.51779171)the Tianjin Municipal Natural Science Foundation(Grant No.18JCYBJC22800).
文摘Under the effect of eccentric loads,when the suction pressure of the composite bucket foundation is leveled,the seepage failure is very easy to occur.The seepage failure occurrence causes the foundation to settle unevenly and impairs the bearing performance.This study uses ABAQUS finite element software to establish a composite bucket foundation model for finite element analysis.The model simulates the seepage of the foundation penetrating process under eccentric load to reveal the induced seepage characteristics of the bucket foundation.The most vulnerable position of seepage failure under the eccentric loading is elucidated.Critical suction formulas for different offset eccentric moment strategies are derived and compared with existing literature formulas.Then the derived formula is supplemented and corrected according to the pressure difference between adjacent cabins.Conclusions can be drawn:(1)Under eccentric loads,the critical suction decreases about 7%−10%.(2)The pressure difference between adjacent cabins impacts significantly on the seepage field,and the critical suction,at most,can be reduced by 17.56%.(3)the offset strategies have little effect on the seepage field.Efficient and appropriate strategies can be selected to meet the requirement of leveling in engineering project.
基金financially supported by the National Natural Science Foundation of China (Grant No. 52171274)
文摘Composite bucket foundation and one-step installation technology for offshore wind turbine are the integration of foundation construction,transportation and whole installation at sea.The cost of offshore wind turbine construction and installation has been largely reduced.Foundation stability is the key technology in the process of towing transportation.Field observation data can reflect the real state of the foundation.In this paper,the influence of water depth and towing speed on liquid level,the compartment pressure,and the pitch angles during towing of composite bucket foundation are studied.These data are analyzed based on the field measurements data from a 3.3 MW offshore wind power project in China.The results show that with varied water depths and towing speeds,the compartment pressure changes are small during the bucket foundation towing process.The offshore wind turbine composite bucket foundation is stable while being towed in the ocean.
基金Project(51378197)supported by the National Natural Science Foundation of China
文摘Based on the double-layered foundation theory, the composite ground with partially penetrated cement fly-ash gravel(CFG) piles was regarded as a double-layered foundation including the surface reinforced area and the underlying untreated stratum. Due to the changing permeability property of CFG piles, the whole consolidation process of the composite ground with CFG piles was divided into two stages, i.e., the early stage(permeable CFG pile bodies) and the later stage(impermeable pile bodies). Then, the consolidation equation of the composite foundation with CFG piles was established by using the Terzaghi one-dimensional consolidation theory. Consequently, the unified formula to calculate the excess pore water pressure was derived with the specific solutions for the consolidation degree of composite ground, reinforced area and underlying stratum under instant load obtained respectively. Finally, combined with a numerical example, influencing rules by main factors(including the replacement rate m, the treatment depth h1, the permeability coefficient Ks1, Kv2 and compression modulus Es1, Es2 of reinforced area and underlying stratum) on the consolidation property of composite ground with CFG piles were discussed in detail. The result shows that the consolidation velocity of underlying stratum is slower than that of the reinforced area. However, the consolidation velocity of underlying stratum is slow at first then fast as a result of the transferring of effective stress to the underlying stratum during the dissipating process of excess pore water pressure.
基金financially supported by the funds for the National Natural Science Foundation of China (Nos. 51509230 and 52071304)the Primary Research&Development Plan of Shandong Province (No. 2019GHY 112044)。
文摘In the design of wind turbine foundations for offshore wind farms, the wave load and run-up slamming on the supporting structure are the quantities that need to be considered. Because of a special arc transition, the interaction between the wave field and the composite bucket foundation(CBF) becomes complicated. In this study, the hydrodynamic characteristics, including wave pressure, load, upwelling, and run-up, around the arc transition of a CBF influenced by regular waves are investigated through physical tests at Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China. The distributions of the wave pressures and upwelling ratios around the CBF are described, and the relationship between the wave load and the wave parameters is discussed. New formulae based on the velocity stagnation head theory with linear wave theory and the second-order Stokes wave theory for wave kinematics are proposed to estimate the wave run-up. Moreover, the multiple regression method with nonlinear technology is employed to deduce an empirical formula for predicting run-up heights. Results show that the non-dimensional wave load increases with the increase in the values of the wave scattering parameter and relative wave height. The wave upwelling height is high in front of the CBF and has the lowest value at an angle of 135? with the incoming wave direction. The performance of the new formulae proposed in this study is compared using statistical indices to demonstrate that a good fit is obtained by the multiple regression method and the analytical model based on the velocity stagnation head theory is underdeveloped.
基金supported by Program for New Century Excellent Talents in University of China (Grant No.NCET-12-0941)the Fundamental Research Funds for the Central Universities of China (Grant No.A0920502051206-3)
文摘With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.
基金Project (50378036) supported by the National Natural Science Foundation of China
文摘The mechanism of long-short composite piled raft foundation was discussed. Assuming the relationship between shear stress and shear strain of the surrounding soil was elasto-plastic, shear displacement method was employed to establish the different explicit relational equations between the load and the displacement at the top of pile in either elastic or elasto-plastic period. Then Mylonakis & Gazetas model was introduced to simulate the interaction between two piles or between piles and soil. Considering the effect of cushion, the flexible coefficients of interaction were provided, With the addition of a relevant program, the settlement calculation for long-short composite piled raft foundation was developed which could be used to account for the interaction of piles, soil and cushion. Finally, the calculation method was used to analyze an engineering example. The calculated value of settlement is 10.2 ram, which is close to the observed value 8.8 mm.
文摘The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs.
文摘Free vibration analysis of symmetrically laminated composite plates resting on Pasternak elastic support and coupled with an ideal, incompressible and inviscid fluid is the objective of the present work. The fluid domain is considered to be infinite in the length direction but bounded in the depth and width directions. In order to derive the eigenvalue equation, Rayleigh-Ritz method is applied for the fluid-plate-foundation system. The efficiency of the method is proved by comparison studies with those reported in the open literature. At the end, parametric studies are carried out to examine the impact of different parameters on the natural frequencies.
文摘Based on the idea of optimization design of pile type, the two kinds of the typical pile type are selected, which containing flexibility pile (e.g. rammed cement-soil pile is for short RCSP), and rigid pile (e.g. cement-flyash-gravel pile is for short CFGP). The three kinds of the composite foundation are designed, which are CFGP, CFG long pile and CFG short pile (for short CFGLP-CFGSP), CFG long-short pile and rammed cement-soil short pile (for short CFGLP-RCSSP). Natural earthquake is simulated by using the engineering blasting;the dynamic characteristics and dynamic response of the composite foundation are studied through field test. CFGLP-RCSSP is closed to linear relation. The bearing capacity of the four composite foundation of the CFGP, CFGLP-CFGSP, and CFGLP-RCSSP in the site are 225 kPa, 179 kPa, and 197 kPa, separately increases 150%, 98.8% and 119% compared to the natural foundation. The vibration main frequency is mainly depended on properties of foundation soil and piles between vibration source and measuring point, pilling load value. Horizontal vibration main frequency greater than the vertical vibration main frequency and the vertical vibration main frequency close to the first-order natural frequency of composite foundation. With the pilling load increasing, the CFGLP-RCSSP pile composite foundation combined frequency decreased. Under the same blast energy, the acceleration peak on the CFG pile composite foundation is less than CFGLP-CFGSP the corresponding values, as the load increases, the peak acceleration gently. CFG pile composite foundation is favorable on seismic. The distribution of peak acceleration is consistent within 4 m from pile top in the CFGLP_RCSSP composite foundation. The maximum of the horizontal acceleration peak along the pile body occurs at a distance of pile top 4 m or the pile top, and that of vertical acceleration peak occurred at a pile top.
基金Project(2011ZA05) supported by State Key Laboratory of Subtropical Building Science in South China University of Technology, China
文摘The simplified analysis method based on the static equilibrium is generally adopted for raft design. The secondary stress of superstructure due to the differential settlement of the foundation is neglected, which leads to larger support moments and longitudinal bending of raft compared with real values. The spring constitutive relation of composite foundation is obtained by the flat plate loading tests in Karst region. The interaction between the spring and the raft is equivalent to the interaction between the composite foundation and the raft. The model for superstructure-raft-composite foundation interaction analysis is thus established and the raft is designed. This method not only considers the nonlinear properties of composite foundation but also analyzes the influence of superstructure on bending moment and deformation of raft. Compared with the inverted floor method, the calculated values of moment become more reasonable and uneven settlements are considered. This can be references to the design of raft foundation in similar regions.
文摘A series of 2D model tests were conducted to assess the foundation stability of composite vertical breakwaters. In this paper, the results from the experimental study are presented conjointly with a formula to estimate the stability number of foundation, which is the most important parameter for evaluation of foundation stability of such structures. The influences of wave height, wave period and the berm width on the stability of compo^ite breakwaters with different armor stone sizes were investigated. Forty-five tests were performed to cover the influences of these parameters. According to the present research, berm width is a significant parameter concerning erosion of armor foundation. As the berm width increases, the amount of berm erosion decreases. Comparisons are made between results of present study and the estimated stability number proposed by Kimura et al. (1994), which is extension of Tanimoto formula. Results show that the later formula underestimates the stability number. However, by applying an enhancement factor about 1.7 meters to Kimura et al. formula, results correlated with the present experimental results..
文摘Based on the idea of optimization design of pile type, the composite foundations, which include cememt-flyash-gaavel (for short CFG) long piles and cement-soil (for short CS) short piles, and CS piles with CFG core as well, are formed. The method of the site dynamic characteristic tests of the composite foundations is discussed. The test results show that fireworks bomb may replace demolitions as the vibration resource. Vibration time is about 0.1 sec. Horizontal vibration major frequency is at 22.476 - 56.436 Hz, and vertical vibration major frequency is at 15.538 - 55.884 Hz. The pile arrangements of the composite foundation in the same site have more effect on the acceleration peak value. From the point of vibration, the anti-seismic effect of the CS piles with CFG core is better than others.
文摘This paper deals with a new type of crushed stone grouting pile with a rigid bearing plate. The load transfer characteristics were analyzed, and a settlement model of the composite foundation reinforced with crushed stone grouting pile and rigid bearing plate was built by FEM program. The effects of replacement ratio of capping plate, replacement ratio of pile, replacement ratio of grout diffusion zone, pile-soil modulus ratio, and serous-soil modulus ratio, on the composite foundation settlement were discussed. It is concluded that the proposed crushed stone grouting pile with a rigid bearing plate is effective in decreasing the settlement of composite foundation.