Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-m...Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.展开更多
Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2′-deoxyuddin-5-yl-methylene malononitrile (1), malo...Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2′-deoxyuddin-5-yl-methylene malononitrile (1), malononitrile (2) and thiophenol (3) or from an unexpected uracil ring-opening and pyddine ring-forming sequence via the reaction of 1 and 3. It is the first time such a sequence has ever been reported.展开更多
Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. Th...Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.展开更多
The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Fi...The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.展开更多
A mathematic model for dynamic and static recrystallization of Mn18Cr18N steel is presented.Hot expanding extrusion forming and air cooling process of 600 MW retaining ring has been simulated by the combination of th...A mathematic model for dynamic and static recrystallization of Mn18Cr18N steel is presented.Hot expanding extrusion forming and air cooling process of 600 MW retaining ring has been simulated by the combination of thermos coupled rigid viscoplasitic FEM with this model,and grain size distribution on cross section of ring is shown.The essential results can be provided for use of the new technique.展开更多
A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "ca...Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.展开更多
In order to meet the requirements of high reliability,long-lifetime and lightweight in a new generation of aerospace,aviation,high-speed train,and energy power equipment,integrated components are urgently needed to re...In order to meet the requirements of high reliability,long-lifetime and lightweight in a new generation of aerospace,aviation,high-speed train,and energy power equipment,integrated components are urgently needed to replace traditional multi-piece,welded components.The applications of integrated components involve in a series of large-size,complex-shaped,highperformance components made of difficult-to-deform materials,which present a huge challenge for forming ultra-large size integrated components.In this paper,the developments and perspectives of several extreme forming technologies are reviewed,including the sheet hydroforming of ultra-large curved components,dieless hydroforming of ellipsoidal shells,radial-axial ring rolling of rings,in situ manufacturing process of flanges,and local isothermal forging of titanium alloy components.The principle and processes for controlling deformation are briefly illustrated.The forming of typical ultra-large size integrated components and industrial applications are introduced,such as the high strength aluminum alloy,3m in diameter,integrated tank dome first formed by using a sheet blank with a thickness the same as the final component,and a 16m diameter,integrated steel ring rolled by using a single billet.The trends for extreme forming of ultra-large size integrated components are discussed with a goal of providing ideas and fundamental guidance for the further development of new forming processes for extreme-size integrated components in the future.展开更多
Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is invest...Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.展开更多
The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis ...The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.展开更多
The relevant results of thermodynamics simulation test, recrystallization study and FEM numercal simulation are described. A method is also introduced that the controlled hot forming is carried out by adopting the pro...The relevant results of thermodynamics simulation test, recrystallization study and FEM numercal simulation are described. A method is also introduced that the controlled hot forming is carried out by adopting the program of expansion-extrusion compound forming.展开更多
The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These d...The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.展开更多
Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound w...Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.展开更多
In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube ...In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.展开更多
Let R=GR (4,m)be a Galois ring with Teichmuller set T_m and Tr_m be the trace function fromRto Z_4.In this paper,two classes of quaternary codes C_1 = {c(a,b):a ∈R,b ∈ T_(m/2)},where c(a,b)=(Tr_m(ax)+Tr_(m/2)(2 bx^(...Let R=GR (4,m)be a Galois ring with Teichmuller set T_m and Tr_m be the trace function fromRto Z_4.In this paper,two classes of quaternary codes C_1 = {c(a,b):a ∈R,b ∈ T_(m/2)},where c(a,b)=(Tr_m(ax)+Tr_(m/2)(2 bx^(2 m/2 +1)))_(x∈T_m),and C_2= {c(a,b):a ∈ R,b ∈ T_m}, where c(a,b)=(Tr_m(ax+2 bx^(2 k+1)))_(x∈T_m),and m/gcd(m,k)is even,are investigated,respectively.The Lee weight distributions,Hamming weight distributions and complete weight distributions of the codes are completely given.展开更多
The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In o...The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.展开更多
The title compound, 2,2-bis(4-tertial butyl phenyl) naphthopyran, has been prepared and characterized by means of IR, ^1H NMR and elemental analysis, and its crystal structure was determined with X-ray diffraction i...The title compound, 2,2-bis(4-tertial butyl phenyl) naphthopyran, has been prepared and characterized by means of IR, ^1H NMR and elemental analysis, and its crystal structure was determined with X-ray diffraction in the ring-opened form after hydrolyzation. It belongs to monoclinic, space group P21/c, with a = 14.358(3), b = 7.6725(15), c = 24.470(5) А, β= 97.147(4)°, C_33H_36O2, Mr=464.62, V= 2674.8(9)А^3, Z = 4, Dc = 1.154 g/cm^3,μ= 0.070 mm^-1, F(000) = 1000, the final R = 0.0514 and wR = 0.1272 for 5444 observed reflections (I 〉 2σ(I)). X-ray analysis revealed that the C(13)-O(1) bond of the title compound cracks after UV irradiation, the six-membered heterocycles are destroyed, and zwitterionic intermediates come into being. The molecular structure in the ring-opened form is obtained after hydrolyzation. It is infrequent that the single-crystal structure is determined in a ring-opened form. A two-dimensional framework is formed by O-H…O and CAr-H…O hydrogen bonds. The UV-vis spectra show that the title compound exhibits excellent photochromic properties in solutions and polymers.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
文摘Mn18Cr18N, the high-nitrogen steel, is the 2nd generation material for manufacturing the retaining ring of firepower generators. In this paper, the hot deformation behavior of the material was investigated by thermo-mechanical modeling tests. And the flow stress curves of the steel were obtained for various combinations of the temperature and strain rate. Based on the results of the tests, the complex forming process of a retaining ring including punching, expanding and extrusion with an enclosure was put forward and simulated by means of numerical simulation method. The results indicate that the process is a novel and force-saved practical technology for manufacturing heavy retaining rings.
基金the National Natural Science Foundation of China(No.20772025)the Program for Science & Technology Innovation Talents in Universities of Henan Province(No.2008HASTIT006)the Natural Science Foundation of Department of Education of Henan Province(No.2008A150013)
文摘Novel pyrimidine nucleoside-3,5-dicyanopyridine hybrids (4) or pyridine attached acylureas (5) were selectively and efficiently prepared from the reaction of 2′-deoxyuddin-5-yl-methylene malononitrile (1), malononitrile (2) and thiophenol (3) or from an unexpected uracil ring-opening and pyddine ring-forming sequence via the reaction of 1 and 3. It is the first time such a sequence has ever been reported.
文摘Wrinkling is a common failure in the sheet metal forming of titanium owing to the relatively poor ability to shrink. It is important to predict wrinkling accurately in the sheet metal forming without costly trials. The ABAQUS/Explicit code was utilized to predict the wrinkling behavior in the sheet metal forming of Ti-15-3 alloy sheets. In terms of the comparison of wrinkling behavior between the simulation and experiment of the Fukui's conical cup tests at room temperature, the sensitivities of wrinkling simulation to various input parameters were evaluated comprehensively and quantitatively. Prediction of wrinkling and influence of rubber hardness on the winkling behavior in the rubber forming of convex flange were investigated quantitatively and validated by the rubber forming experiments. The excellent agreements between the simulations and the experiments conIirmed the accuracy of the prediction.
文摘The forming limit diagram of Ti-15-3 alloy sheet was constituted at room temperature. The effects of different punch and rubber hardness on the limit principal strain distributions were investigated experimentally. Finite element analysis models of the samples with dimensions of 180 mm×180 mm were established to analyze the friction coefficients of different interfaces. Effects of various friction coefficients on the strain distributions were studied in detail. Finally, the friction coefficients in the cold forming were determined by contrasting the strain results between the experimental data and the simulated ones.
文摘A mathematic model for dynamic and static recrystallization of Mn18Cr18N steel is presented.Hot expanding extrusion forming and air cooling process of 600 MW retaining ring has been simulated by the combination of thermos coupled rigid viscoplasitic FEM with this model,and grain size distribution on cross section of ring is shown.The essential results can be provided for use of the new technique.
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
基金supported by Key Program of National Natural Science Foundation of China(Grant No.51135007)National Natural Science Foundation of China(Grant No.51075290)
文摘Bearing ring is the crucial component of bearing. With regard to such problems as material waste, low efficiency and high energy consumption in current process of producing large bearing ring, a new process named "casting-rolling compound forming technology" is researched by taking the typical 42CrMo slew bearing as object. Through theoretical analysis, the design criteria of the main casting-rolling forming parameters are put forward at first. Then the constitutive relationship model of as-cast 42CrMo steel and its mathematical model of dynamic recrystallization are obtained according to the results of the hot compression experiment. By a coupled thermal-mechanical finite element model for radial-axial rolling of bearing ring, the fraction of dynamic recrystallization is calculated and recrystallized grains size are predicated. Meanwhile, the effects of the initial rolling temperature and feed rate of idle roll on material microstructure evolution are analyzed. Finally, the industrial rolling experiment is designed and performed, based on the simulation results. In addition, mechanical and metallographic tests are conducted on rolled bearing ring to get the mechanical parameters and metallographic structure. The experimental data and results show that the mechanical properties of bearing ring produced by casting-rolling compound forming technology are up to industrial standard, and a qualified bearing ring can be successfully formed by employing this new technology. Through the study, a process of forming large bearing ring directly by using casting ring blank is obtained, which could provide an effective theoretical guidance for manufacturing large ring parts. It also has an edge in saving material, lowering energy and improving efficiency.
基金This work was funded in part by the National Key Research and Development Program of China(2017YFB0306304)the National Natural Science Foundation of China(51705102,U1637209).The authors wish to express their gratitude for the funding.
文摘In order to meet the requirements of high reliability,long-lifetime and lightweight in a new generation of aerospace,aviation,high-speed train,and energy power equipment,integrated components are urgently needed to replace traditional multi-piece,welded components.The applications of integrated components involve in a series of large-size,complex-shaped,highperformance components made of difficult-to-deform materials,which present a huge challenge for forming ultra-large size integrated components.In this paper,the developments and perspectives of several extreme forming technologies are reviewed,including the sheet hydroforming of ultra-large curved components,dieless hydroforming of ellipsoidal shells,radial-axial ring rolling of rings,in situ manufacturing process of flanges,and local isothermal forging of titanium alloy components.The principle and processes for controlling deformation are briefly illustrated.The forming of typical ultra-large size integrated components and industrial applications are introduced,such as the high strength aluminum alloy,3m in diameter,integrated tank dome first formed by using a sheet blank with a thickness the same as the final component,and a 16m diameter,integrated steel ring rolled by using a single billet.The trends for extreme forming of ultra-large size integrated components are discussed with a goal of providing ideas and fundamental guidance for the further development of new forming processes for extreme-size integrated components in the future.
文摘Superplastic forming and diffusion bonding (SPF/DB) is a well-established process for the manufacture of components almost exclusively from Ti-6AI-4V sheet material. The sandwich structure of Ti-6AI-4V alloy is investigated. The effects of the microstructure on the SPF/DB process were discussed. The microstructure at the interfaces and the distribution of thickness were researched.
基金This research was supported by the Chinese Foundation for Development of Geological Science and Technology (Project 49273162)the National Natural Science Foundation of China(Project 49273162)
文摘The northern Guangxi region is an important rare metal, rare earth metal and polymetallic metallogenic province. In the region there exist five metallogenic series and two metallogenic subseries, whose metallogenesis shows features of polycyclic spiral evolution throughout the geological history. As far as various cycles are concerned, mantle-derived ore substances were reduced while crust-derived ore substances increased from early to late timesfin the whole geological evolutionary history, mantle-derived substances decreased gradually while crust-derived ones increased. Meanwhile ore element associations became more and more varied. In terms of space, mineralization migrated from the old basement outwards, i.e. from west to east during the Precambrian, and from north to south during the Phanerozoic, and again from east to west during the Yanshanian.
文摘The relevant results of thermodynamics simulation test, recrystallization study and FEM numercal simulation are described. A method is also introduced that the controlled hot forming is carried out by adopting the program of expansion-extrusion compound forming.
文摘The Liaoji Proterozoic rift is an inter-intracontinenatl rift developed from Archean granite-greenstone tectonic regime and contains many important mineral deposits of U, B, magnesite, Pb-Zn, Au, Ag, Co and P. These deposits were formed as the result of late mobilization, transportation and concentfation of the previously enriched ore-forming mate- rials in several ore-bearing formations formed during the rift stage. So the metallogeny of these deposits in the rift shows both inheritance and new generation of the ore-forming materials. In future ore-searching practice, attentions should be paid on the studies of the ore-bearing formations in the rift, on the multiple stages of metallogeny and and on multiple derivations of the ore-forming materials.
文摘Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.
基金supported by the National Natural Science Foundation of China (11272357 and 11102140)Doctoral Fund of Ministry of Education of China (200804251520 and 20110141120024)Natural Science Foundation of Shandong Province (ZR2009AQ006)
文摘In this study, we developed a general method to analytically tackle a kind of movable boundary problem from the viewpoint of energy variation. Having grouped the adhesion of a micro-beam, droplet and carbon nanotube (CNT) ring on a substrate into one framework, we used the developed line of reasoning to investigate the adhesion behaviors of these systems. Based upon the derived governing equations and transversality conditions, explicit solutions involving the critical parameters and morphologies for the three systems are successfully obtained, and then the parameter analogies and common characteristics of them are thor- oughly investigated. The presented method has been verified via the concept of energy release rate in fracture mechanics. Our analyses provide a new approach for exploring the mechanism of different systems with similarities as well as for understanding the unity of nature. The analysis results may be beneficial for the design of nano-structured materi- als, and hold potential for enhancing their mechanical, chemical, optical and electronic properties.
文摘Let R=GR (4,m)be a Galois ring with Teichmuller set T_m and Tr_m be the trace function fromRto Z_4.In this paper,two classes of quaternary codes C_1 = {c(a,b):a ∈R,b ∈ T_(m/2)},where c(a,b)=(Tr_m(ax)+Tr_(m/2)(2 bx^(2 m/2 +1)))_(x∈T_m),and C_2= {c(a,b):a ∈ R,b ∈ T_m}, where c(a,b)=(Tr_m(ax+2 bx^(2 k+1)))_(x∈T_m),and m/gcd(m,k)is even,are investigated,respectively.The Lee weight distributions,Hamming weight distributions and complete weight distributions of the codes are completely given.
基金Supported by National Natural Science Foundation of China(Grant No.51335009)Major National Science and Technology Project of China(Grant No.2011ZX04001-011)
文摘The existing plastic forming equipment are mostly driven by traditional AC motors with long trans- mission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for com- plicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion with- out transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on thedynamic test benches are conducted. The results indicate that the output torque can attain to 420 N-m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive, the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accu- racy direct driving device in plastic forming equipment.
基金supported by the National Natural Science Foundation of China (Nos. 20602020 and 20490210)
文摘The title compound, 2,2-bis(4-tertial butyl phenyl) naphthopyran, has been prepared and characterized by means of IR, ^1H NMR and elemental analysis, and its crystal structure was determined with X-ray diffraction in the ring-opened form after hydrolyzation. It belongs to monoclinic, space group P21/c, with a = 14.358(3), b = 7.6725(15), c = 24.470(5) А, β= 97.147(4)°, C_33H_36O2, Mr=464.62, V= 2674.8(9)А^3, Z = 4, Dc = 1.154 g/cm^3,μ= 0.070 mm^-1, F(000) = 1000, the final R = 0.0514 and wR = 0.1272 for 5444 observed reflections (I 〉 2σ(I)). X-ray analysis revealed that the C(13)-O(1) bond of the title compound cracks after UV irradiation, the six-membered heterocycles are destroyed, and zwitterionic intermediates come into being. The molecular structure in the ring-opened form is obtained after hydrolyzation. It is infrequent that the single-crystal structure is determined in a ring-opened form. A two-dimensional framework is formed by O-H…O and CAr-H…O hydrogen bonds. The UV-vis spectra show that the title compound exhibits excellent photochromic properties in solutions and polymers.
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.