In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obta...In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commutative Frobenius rings are also given.展开更多
We study the reversible properties of monoid crossed products. The new class of strongly CM-reversible rings is introduced and characterized. This class of rings is a generalization of those of strongly reversible rin...We study the reversible properties of monoid crossed products. The new class of strongly CM-reversible rings is introduced and characterized. This class of rings is a generalization of those of strongly reversible rings, skew strongly reversible rings and strongly M-reversible rings. Some well-known results on this subject are generalized and extended.展开更多
Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a an...Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs and such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings.展开更多
For a monoid M and an endomorphism α of a ring R, we introduce the notion of strongly M-α-reflexive rings and study its properties. For an u.p.-monoid M and a right Ore ring R with its classical right quotient ring ...For a monoid M and an endomorphism α of a ring R, we introduce the notion of strongly M-α-reflexive rings and study its properties. For an u.p.-monoid M and a right Ore ring R with its classical right quotient ring Q, we prove that R is strongly M-α-reflexive if and only if Q is strongly M-α-reflexive, where R is α-rigid, α is an epimorphism of R. The relationship between some special subrings of upper triangular matrix rings and strongly M-α-reflexive rings is also investigated. Several known results similar to strongly M-α-reversible rings are obtained.展开更多
文摘In this article, the Rosenbloom-Tsfasman metric of matrix product codes over finite commutative rings is studied and the lower bounds for the minimal Rosenbloom- Tsfasman distances of the matrix product codes axe obtained. The lower bounds of the dual codes of matrix product codes over finite commutative Frobenius rings are also given.
基金The NSF(11601005) of Chinathe Jiangsu Planned Projects(1601151C) for Postdoctoral Research Funds+1 种基金the Provincial NSF(KJ2017A040) of Anhui Provincethe Graduate Students Innovation Projects(2016141) of Anhui University of Technology
文摘We study the reversible properties of monoid crossed products. The new class of strongly CM-reversible rings is introduced and characterized. This class of rings is a generalization of those of strongly reversible rings, skew strongly reversible rings and strongly M-reversible rings. Some well-known results on this subject are generalized and extended.
文摘Let R be a commutative ring with non-zero identity. The cozero-divisor graph of R, denoted by , is a graph with vertices in , which is the set of all non-zero and non-unit elements of R, and two distinct vertices a and b in are adjacent if and only if and . In this paper, we investigate some combinatorial properties of the cozero-divisor graphs and such as connectivity, diameter, girth, clique numbers and planarity. We also study the cozero-divisor graphs of the direct products of two arbitrary commutative rings.
基金partially supported by the Provincial Natural Science Foundation of Anhui Province of China(KJ2017A040)
文摘For a monoid M and an endomorphism α of a ring R, we introduce the notion of strongly M-α-reflexive rings and study its properties. For an u.p.-monoid M and a right Ore ring R with its classical right quotient ring Q, we prove that R is strongly M-α-reflexive if and only if Q is strongly M-α-reflexive, where R is α-rigid, α is an epimorphism of R. The relationship between some special subrings of upper triangular matrix rings and strongly M-α-reflexive rings is also investigated. Several known results similar to strongly M-α-reversible rings are obtained.