MEMS gyroscope is a new inertial navigation sensor,which can measure the input angular rate of sensitive axis using Coriolis effect.Compared to the conventional gyroscope,it owns many unique advantages.A novel structu...MEMS gyroscope is a new inertial navigation sensor,which can measure the input angular rate of sensitive axis using Coriolis effect.Compared to the conventional gyroscope,it owns many unique advantages.A novel structure of vibrating ring gyroscope is proposed and the finite element model of the oscillator is established based on MEMS technology.Through the modal analysis,the natural frequency and mode shapes of the oscillator are obtained.By analyzing the effects of the structural parameters on the mode shapes and frequency of the harmonic oscillator,the optimal design parameters are got.The frequency difference between the operating mode and the other modes is greater than 1kHz after optimization,which can avoid the frequency coupling of the operating mode and other vibrating modes of the oscillator.The simulation results show that the performance parameters of the ring structure meet the design requirements and have obvious advantages.展开更多
Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the...Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the sidewall of the structure. It has advantages of large vibrating amplitude, high energy conversion efficiency and compact structure. The working principle of the piezoelectric ring vibrating gyroscope is based on the inertia effect of the standing wave in the axisymmetric resonator caused by Coriolis force. The finite element method(FEM) analysis has been implemented to characterize the ring type resonator. The prototypal gyroscope was manufactured and has been trimmed by mechanical way. The harmonic response of the ring vibrating gyroscope has been tested. The resonating frequency of the ring type resonator is 3715.6 Hz and the frequency split of the two working modes before trimming was about 5 Hz and was reduced to sub-0.01 Hz after trimming procedure. The Q-factor of the ring type resonator was 2504. Then, the turntable experiment was implemented. The measured scale factor k is 9.24 m V/[(°)·s] and the full scale range of the gyroscope is larger than ±300(°)/s.展开更多
Mode matching is the key to improve the performance of micro-machined vibrating ring gyroscopes.Mass and stiffness asymmetries can lend to normal modes badly mismatch for gyroscopes fabricated by single-crystal silico...Mode matching is the key to improve the performance of micro-machined vibrating ring gyroscopes.Mass and stiffness asymmetries can lend to normal modes badly mismatch for gyroscopes fabricated by single-crystal silicon.The mismatch of the normal nodes results in large normal mode frequency split and degraded sensitivity.To address this issue,a Silicon-On-Insulator(SOI) wafer is used to fabricate the sensor chips.Meanwhile,a compensate disk and the backside coated negative photo resist(AZ303) is employed to weaken the Lag and Footing effect during the Deep Reactive Ion Etching(DRIE) process.Test results reveal that frequency split between the normal modes is of less than 10 Hz before the following electronic tuning.Thus,the mode matching of the electromagnetic vibrating ring gyroscope is probable to be realized.展开更多
文摘MEMS gyroscope is a new inertial navigation sensor,which can measure the input angular rate of sensitive axis using Coriolis effect.Compared to the conventional gyroscope,it owns many unique advantages.A novel structure of vibrating ring gyroscope is proposed and the finite element model of the oscillator is established based on MEMS technology.Through the modal analysis,the natural frequency and mode shapes of the oscillator are obtained.By analyzing the effects of the structural parameters on the mode shapes and frequency of the harmonic oscillator,the optimal design parameters are got.The frequency difference between the operating mode and the other modes is greater than 1kHz after optimization,which can avoid the frequency coupling of the operating mode and other vibrating modes of the oscillator.The simulation results show that the performance parameters of the ring structure meet the design requirements and have obvious advantages.
基金Projects(51335011,51275522)supported by the National Natural Science Foundation of ChinaProject(HPCM-2013-08)supported by Key Lab Open Foundation of State Key Laboratory of High Performance(Complex Manufacturing),Central South University,China
文摘Solid-state wave gyroscope is one kind of high-performance vibrating gyroscopes. The present work develops a new type of solid-state wave gyroscope—a ring vibrating gyroscope driven by piezo-electrodes located on the sidewall of the structure. It has advantages of large vibrating amplitude, high energy conversion efficiency and compact structure. The working principle of the piezoelectric ring vibrating gyroscope is based on the inertia effect of the standing wave in the axisymmetric resonator caused by Coriolis force. The finite element method(FEM) analysis has been implemented to characterize the ring type resonator. The prototypal gyroscope was manufactured and has been trimmed by mechanical way. The harmonic response of the ring vibrating gyroscope has been tested. The resonating frequency of the ring type resonator is 3715.6 Hz and the frequency split of the two working modes before trimming was about 5 Hz and was reduced to sub-0.01 Hz after trimming procedure. The Q-factor of the ring type resonator was 2504. Then, the turntable experiment was implemented. The measured scale factor k is 9.24 m V/[(°)·s] and the full scale range of the gyroscope is larger than ±300(°)/s.
基金Supported by the National Natural Science Foundation of China(No.61072022)
文摘Mode matching is the key to improve the performance of micro-machined vibrating ring gyroscopes.Mass and stiffness asymmetries can lend to normal modes badly mismatch for gyroscopes fabricated by single-crystal silicon.The mismatch of the normal nodes results in large normal mode frequency split and degraded sensitivity.To address this issue,a Silicon-On-Insulator(SOI) wafer is used to fabricate the sensor chips.Meanwhile,a compensate disk and the backside coated negative photo resist(AZ303) is employed to weaken the Lag and Footing effect during the Deep Reactive Ion Etching(DRIE) process.Test results reveal that frequency split between the normal modes is of less than 10 Hz before the following electronic tuning.Thus,the mode matching of the electromagnetic vibrating ring gyroscope is probable to be realized.