An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification p...An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.展开更多
The parameters that describe the complex degree of a certain casting are of some uncertainty. Therefore, a new method based on the fuzzy theory to classify the complex degree of castings has been presented in this pap...The parameters that describe the complex degree of a certain casting are of some uncertainty. Therefore, a new method based on the fuzzy theory to classify the complex degree of castings has been presented in this paper. The feasibility of fuzzy theory in describing the complex degree of castings has been discussed and the procedure of this method has been specified by analyzing the complex degrees of some typical castings. The element factors that influence the casting complexity, have been summarized, which include the wall-thickness and the number of transition surface, etc. The results show that it is reasonable and practicable to classify the complex degree of castings with the fuzzy theory.展开更多
CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidificati...CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.展开更多
An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sinterin...An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sintering) materials, sintering parameters, solidification simulation and gating and risering system optimization. Using CAIC process, many large-sized quality superalloy castings with complicated shape and thin wall have been produced successfully and economically in Central Iron & steel Research Institute (CISRI).展开更多
Inoculation of high chromium cast iron is made by RE complex inoculant. Influence of inoculating on rolling fatigue wear characteristics of high chromium cast iron is investigated. The experimental resutls indicate th...Inoculation of high chromium cast iron is made by RE complex inoculant. Influence of inoculating on rolling fatigue wear characteristics of high chromium cast iron is investigated. The experimental resutls indicate that high chromium cast iron inoculated by RE complex inoculation is improved in structure and properties, i. e. fatigue wear sevice life is prolonged and relative wear resistance is increased greatly.展开更多
A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance a...A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.展开更多
I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the ...I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the unconformable contact zone between the Archeozoic Kangding complex and the Presinian Yanbian group. The country rocks of the complex are magmatic and regional metamorphic rocks. The complex is stretched NW, irregularly ellipsoidal in shape, 9 km in length (SN)展开更多
基金the National Natural Science Foundation of China(Nos.52071278,51827801)the National Key Research and Development Program of China(No.2018YFA0703603)the Hebei Normal University of Science&Technology,China(No.2021YB012).
文摘An outer ring of 29320 self-aliging roller bearing was used in an experimental study on the casting of Zr_(41)Ti_(14)Cu_(12.5)Ni_(10)Be_(22.5) amorphous alloy.Numerical simulations of mold filling and solidification processes were carried out to determine the velocity fields and temperature fields of the alloy melt during mold filling process as well as the temperature fields and temperature gradient fields in the course of the solidification.According to the results,a cast with a complete shape can be obtained at 1200℃under the condition that the cooling rate is greater than the critical cooling rate.The ring-shaped part with a thickness of 25 mm,an equivalent diameter of 22 mm,and a mass of 1.32 kg was prepared by gravity casting in a copper mold.X-ray diffraction and differential scanning calorimetry data revealed that the produced cast had the amorphous structure.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50775050)the State Key Laboratory of Solidification Processing in NWPU(Grant No.200702)
文摘The parameters that describe the complex degree of a certain casting are of some uncertainty. Therefore, a new method based on the fuzzy theory to classify the complex degree of castings has been presented in this paper. The feasibility of fuzzy theory in describing the complex degree of castings has been discussed and the procedure of this method has been specified by analyzing the complex degrees of some typical castings. The element factors that influence the casting complexity, have been summarized, which include the wall-thickness and the number of transition surface, etc. The results show that it is reasonable and practicable to classify the complex degree of castings with the fuzzy theory.
文摘CA (Computer aided) investment casting technique used in superalloy castings of aerospace engine parts was presented. CA investment casting integrated computer application, RP (Rapid Prototyping) process, solidification simulation and investment casting process. It broke the bottle neck of making metal die. Solid model of complex parts were produced by UGII or other software, then translated into STL(Stereolithography) file, after RP process of SLS(Selective Laser Sintering), wax pattern used in investment casting can be acquired without metal die in short time. These can reduce period and cost greatly of complex superalloy parts development of engine. The key processes of CA investment casting were discussed. The accuracy of model translation should match that of RP system. Choice of RP material, surface polishing, sintering parameter plays important role in RP process. Other processes, like solidification simulating and optimization of gate system were introduced. The conclusion was that complex parts can be produced by CA investment casting with lots of advantages. The accuracy of castings can reach CT5~7,and the smoothness can get Ra3~13 mm. These parts of engines worked well.
文摘An integrative computer aided investment casting (CAIC) technology for making complicated superalloy castings was described. Key processes of CAIC were discussed including the choice of SLS (Selectively Laser Sintering) materials, sintering parameters, solidification simulation and gating and risering system optimization. Using CAIC process, many large-sized quality superalloy castings with complicated shape and thin wall have been produced successfully and economically in Central Iron & steel Research Institute (CISRI).
文摘Inoculation of high chromium cast iron is made by RE complex inoculant. Influence of inoculating on rolling fatigue wear characteristics of high chromium cast iron is investigated. The experimental resutls indicate that high chromium cast iron inoculated by RE complex inoculation is improved in structure and properties, i. e. fatigue wear sevice life is prolonged and relative wear resistance is increased greatly.
基金supported by the National Natural Science Foundation of China(No.51420105013)the State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(No.SKLGDUEK1713)the Fundamental Research Funds for the Central Universities(Nos.106112017CDJXY200003 and 106112017CDJPT200001)
文摘A new type of displacement pile, the X-section cast-in-place concrete (XCC) pile, has recently been developed in China. Extensive field tests and laboratory experi- ments are undertaken to evaluate its performance and quantify the non-uniform deforma- tion effect (NUDE) of the X-shaped cross section during installation. This paper develops a simplified theoretical model that attempts to capture the NUDE. Based on the theory of complex variable plane elasticity, closed-form solutions of the stress and displacement for the X-shaped cavity boundary value problem are given. Subsequently, the analytical solution is used to evaluate the NUDE, the concrete filling index (CFI), and the perimeter reduction coefficient of the XCC pile cross section. The computed results are compared with field test results, showing reasonable agreement. The present simplified theoretical model reveals the deformation mechanism of the X-shaped cavity and facilitates applica- tion of the newly developed XCC pile technique in geotechnical engineering.
文摘I.GEOLOGICAL SETTING OF THE BASIC-ULTRABASIC COMPLEX The Yanbian basic-ultrabasic complex is situated on the west edge of the middle section of the Chuan Dian (Sichuan Yunnan) SN-trending tectonic zone, intruding the unconformable contact zone between the Archeozoic Kangding complex and the Presinian Yanbian group. The country rocks of the complex are magmatic and regional metamorphic rocks. The complex is stretched NW, irregularly ellipsoidal in shape, 9 km in length (SN)