The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with ...The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.展开更多
This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate ...This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.展开更多
In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,r...In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,reactive alloy contains a large portion of reactive metal elements(Al,Mg,Ti,Zr,etc.),which breaks up under high-velocity impact conditions,generating a large number of high-temperature combustible fragments,which undergo a violent combustion reaction with air.Compared with traditional metal polymers(Al-PTFE)and other reactive composites,it has higher density and strength,excellent mechanical properties and broader application prospects.Currently,researchers have mainly investigated the impact energy release mechanism of reactive alloys through impact tests,and found that there are several important stages in the process of the material from fragmentation to reaction,i.e.,impact fragmentation of the material,rapid heating and combustion reaction.This paper focuses on three problems that need to be solved in the impact-induced energy release process of reactive alloys,namely:the fragmentation mechanism and size distribution law of the fragments produced by the impact of the material on the target,the relationship between the transient temperatures and the size of the fragments,and the reaction temperatures and size thresholds of the fragments to undergo the chemical reaction.The current status of the research of the above problems is reviewed,some potential directions to reveal the impact induced reaction mechanism of reactive alloy is discussed.展开更多
Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical ...Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.展开更多
Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is ...Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.展开更多
AIM:To describe the gonioscopic profile and intraocular pressure(IOP)in primary angle-closure(PAC)disease in patients presenting to a tertiary eye care network in India.METHODS:A cross-sectional hospital-based study t...AIM:To describe the gonioscopic profile and intraocular pressure(IOP)in primary angle-closure(PAC)disease in patients presenting to a tertiary eye care network in India.METHODS:A cross-sectional hospital-based study that included 31484 new patients presenting between 2011 and 2021.Patients with a clinical diagnosis of PAC/suspect/glaucoma were included.The data was collected from an electronic medical record system.RESULTS:PAC glaucoma(PACG)(47.55%)was the most common diagnosis followed by PAC(39.49%)and PAC suspect(PACS;12.96%).Female preponderance(54.6%)was noted with higher mean age at presentation among males(P<0.0001).PACS and PAC showed the highest prevalence in 6th decade but PACG was higher at 7th decade.The probability of angle opening was 95.93%,90.32%and 63.36%in PACS,PAC and PACG eyes respectively post peripheral iridotomy(PI).Plateau iris syndrome(PIS)was noted in 252 eyes and all showed post dilated rise of IOP.A post dilated IOP rise was also noted with 8.86%,33.95%and 57.19%eyes with PACS,PAC and PACG respectively with IOP rise between 6-8 mm Hg across the disease spectrum.CONCLUSION:The superior quadrant is the narrowest angle and difficult to open with indentation and post PI.The probability of angle opening is less in PIS especially the complete variety along with post dilated IOP rise.The post dilated IOP rise in angle closure eyes warrants a careful dilatation,especially with PIS.展开更多
The Caroline Plate is located among the Pacific Plate,the Philippine Sea Plate,and the India Australia Plate,and plays a key role in controlling the spreading direction of the Philippine Sea Plate.The Caroline Submari...The Caroline Plate is located among the Pacific Plate,the Philippine Sea Plate,and the India Australia Plate,and plays a key role in controlling the spreading direction of the Philippine Sea Plate.The Caroline Submarine Plateau(or Caroline Ridge)and the Eauripik Rise on the south formed a remarkable T-shaped large igneous rock province,which covered the northern boundary between the Caroline Plate and the Pacific Plate.However,relationship between these tectonic units and magma evolution remains unclear.Based on magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique was used to study the boundary of the Caroline Plate.Results show that the northern boundary is a transform fault that runs 1400 km long in approximately 28 km wide along the N8°in E-W direction.The eastern boundary is an NNW-SSE trending fault zone and subduction zone with a width of tens to hundreds of kilometers;and the north of N4°is a fracture zone of dense faults.The southeastern boundary may be the Lyra Trough.The area between the southwestern part of the Caroline Plate and the Ayu Trough is occupied by a wide shear zone up to 100 km wide in nearly S-N trending in general.The Eauripik transform fault(ETF)in the center of the Caroline Plate and the fault zones in the east and west basins are mostly semi-parallel sinistral NNW-SSE–trending faults,which together with the eastern boundary Mussau Trench(MT)sinistral fault,the northern Caroline transform fault(CTF),and the southern shear zone of the western boundary,indicates the sinistral characteristics of the Caroline Plate.The Caroline hotspot erupted in the Pacific Plate near the CTF and formed the west Caroline Ridge,and then joined with the Caroline transform fault at the N8°.A large amount of magma erupted along the CTF,by which the east Caroline Ridge was formed.At the same time,a large amount of magma developed southward via the eastern branch of the ETF,forming the northern segment of the Eauripik Rise.Therefore,the magmatic activity of the T-shaped large igneous province is obviously related to the fault structure of the boundary faults between the Caroline Plate and Pacific Plate,and the active faults within the Caroline Plate.展开更多
The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coast...The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.展开更多
A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered de...A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.展开更多
2023 will be remembered as a critical juncture in the third decade of the 21st century.Significant changes have been witnessed in the international landscape,underpinned by the law of history that great powers rise an...2023 will be remembered as a critical juncture in the third decade of the 21st century.Significant changes have been witnessed in the international landscape,underpinned by the law of history that great powers rise and inevitably fall.It could be deemed a year of coup d'état for Africa,a year of conflict for Eastern Europe,a year of crisis for the Middle East,and a year of diplomacy for major powers.Countries around the globe are concerned about how the world and times will evolve as they pursue their security and development.As a responsible major country,China has proposed its solutions for enhancing security,development,and civilizations worldwide.It applies an approach that removes barriers and increases connectivity,turns shocks into driving forces,accumulates experience from setbacks,and arouses confidence in today's unsettled world.While promoting world peace and development,China also needs to pay close heed to the changes that are taking place.Only by identifying the crux of its problems and stopping the spread of risks can China ensure a dynamic equilibrium between security and development.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the trans...As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.展开更多
The rising behavior of single bubbles has been investigated in six systems with different viscosity and Morton number(Mo) from 3.21×10-11 to 163. Bubbles with maximum equivalent diameter of up to 16 mm were inves...The rising behavior of single bubbles has been investigated in six systems with different viscosity and Morton number(Mo) from 3.21×10-11 to 163. Bubbles with maximum equivalent diameter of up to 16 mm were investigated. The bubble Reynolds number(Re) ranged from 0.02 to 1200 covering 3 regimes in which two func-tions are obtained relating the drag coefficient,CD,with Re and Mo. It has been found that in the high Reynolds number regime the drag coefficient increases until the Reynolds number of about 1200. The classic expression of Jamialahmadi(1994) is improved and extended to high viscosity liquids. A new relationship for the aspect ratio of deformed bubbles in terms of Re,the Etvs number and Mo,applicable to a wide range of system properties,espe-cially in high viscosity liquids,is also suggested.展开更多
Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rule...Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.展开更多
Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At...Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At a constant temperature with rapidly depressurizing to 0.1 MPa, CH4 hydrate dissociated rapidly at initial dissociation and then the dissociation rate gradually decreased. However, the dissociation of CH4 hydrate at temperatures of 261 to 266 K was much faster than that at temperatures of 269 to 272 K, indicating its anomalous preservation. Under an equilibrium P, T conditions, rising temperature had extensively controlling impact on dissociation of CH4 hydrate at equilibrium pressures of 2.31, 2.16 and 1.96 MPa. In this study, we report the effect of pressure on CH4 hydrate dissociation, especially the effect of equilibrium pressure on dissociation at various melting temperatures. And we find that the ice particles size of CH4 hydrate formed may dominant the CH4 hydrate dissociation. Dissociation of CH4 hydrate formed from ice particles of smaller than 250 μm may not have an anomalous preservation below the ice point, while particles larger than 250 μm may have more extensive anomalous preservation.展开更多
基金National Natural Science Foundation of China(61974116)。
文摘The electrostatic discharge(ESD)protection circuit widely exists in the input and output ports of CMOS digital circuits,and fast rising time electromagnetic pulse(FREMP)coupled into the device not only interacts with the CMOS circuit,but also acts on the protection circuit.This paper establishes a model of on-chip CMOS electrostatic discharge protection circuit and selects square pulse as the FREMP signals.Based on multiple physical parameter models,it depicts the distribution of the lattice temperature,current density,and electric field intensity inside the device.At the same time,this paper explores the changes of the internal devices in the circuit under the injection of fast rising time electromagnetic pulse and describes the relationship between the damage amplitude threshold and the pulse width.The results show that the ESD protection circuit has potential damage risk,and the injection of FREMP leads to irreversible heat loss inside the circuit.In addition,pulse signals with different attributes will change the damage threshold of the circuit.These results provide an important reference for further evaluation of the influence of electromagnetic environment on the chip,which is helpful to carry out the reliability enhancement research of ESD protection circuit.
基金funded by the National Natu-ral Science Foundation of China(Grant No.42075044 and No.41975112)a project supported by the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022006).
文摘This study quantified the regional damages resulting from temperature and sea level changes using the Regional Integrated of Climate and Economy(RICE)model,as well as the effects of enabling and disabling the climate impact module on future emission pathways.Results highlight varied damages depending on regional economic development and locations.Specifically,China and Africa could suffer the most serious comprehensive damages caused by temperature change and sea level rise,followed by India,other developing Asian countries(OthAsia),and other high-income countries(OHI).The comprehensive damage fractions for China and Africa are projected to be 15.1%and 12.5%of gross domestic product(GDP)in 2195,with corresponding cumulative damages of 124.0 trillion and 87.3 trillion United States dollars(USD)from 2005 to 2195,respectively.Meanwhile,the comprehensive damage fractions in Japan,Eurasia,and Russia are smaller and projected to be lower than 5.6%of GDP in 2195,with cumulative damages of 6.8 trillion,4.2 trillion,and 3.3 trillion USD,respectively.Additionally,coastal regions like Africa,the European Union(EU),and OHI show comparable damages for sea level rise and temperature change.In China,however,sea level-induced damages are projected to exceed those from temperature changes.Moreover,this study indicates that switching the damage modules on or off affects the regional and global emission trajectories,but the magnitude is relatively small.By 2195,global emissions under the experiments with all of the damage modules switched off,only the sea level damage module switched on,and only the temperature damage module switched on,were 3.5%,2.3%and 1.2%higher than those with all of the damage modules switched on,respectively.
文摘In recent years,in order to improve the destructive effectiveness of munitions,the use of new types of destructive elements is an important way to improve destructive effectiveness.As a new type of reactive material,reactive alloy contains a large portion of reactive metal elements(Al,Mg,Ti,Zr,etc.),which breaks up under high-velocity impact conditions,generating a large number of high-temperature combustible fragments,which undergo a violent combustion reaction with air.Compared with traditional metal polymers(Al-PTFE)and other reactive composites,it has higher density and strength,excellent mechanical properties and broader application prospects.Currently,researchers have mainly investigated the impact energy release mechanism of reactive alloys through impact tests,and found that there are several important stages in the process of the material from fragmentation to reaction,i.e.,impact fragmentation of the material,rapid heating and combustion reaction.This paper focuses on three problems that need to be solved in the impact-induced energy release process of reactive alloys,namely:the fragmentation mechanism and size distribution law of the fragments produced by the impact of the material on the target,the relationship between the transient temperatures and the size of the fragments,and the reaction temperatures and size thresholds of the fragments to undergo the chemical reaction.The current status of the research of the above problems is reviewed,some potential directions to reveal the impact induced reaction mechanism of reactive alloy is discussed.
基金Under the auspices of the National Key Research and Development Program of China (No.2017YFA0604902,2017YFA0604903,2017YFA0604901)。
文摘Mangroves play a pivotal role in tropical and subtropical coastal ecosystem,yet they are highly vulnerable to the effects of climate change,particularly the accelerated global sea level rise(SLR)and stronger tropical cyclones(TCs).However,there is a lack of research addressing future simultaneous combined impacts of the slow-onset of SLR and rapid-onset of TCs on China's mangroves.In order to develop a comprehensive risk assessment method considering the superimposed effects of these two factors and analyze risk for mangroves in Dongzhaigang,Hainan Island,China,we used observational and climate model data to assess the risks to mangroves under low,intermediate,and very high greenhouse gas(GHG)emission scenarios(such as SSP1-2.6,SSP2-4.5,and SSP5-8.5)in 2030,2050,and 2100,and compiled a risk assessment scheme for mangroves in Dongzhaigang,China.The results showed that the combined risks from SLR and TCs will continue to rise;however,SLRs will increase in intensity,and TCs will decrease.The comprehensive risk of the Dongzhaigang mangroves posed by climate change will remain low under SSP1-2.6 and SSP2-4.5 scenarios by 2030,but it will increase substantially by 2100.While under SSP5-8.5 scenario,the risks to mangroves in Dongzhaigang are projected to increase considerably by 2050,and approximately 68.8%of mangroves will be at very high risk by 2100.The risk to the Dongzhaigang mangroves is not only influenced by the hazards but also closely linked to their exposure and vulnerability.We therefore propose climate resilience developmental responses for mangroves to address the effects of climate change.This study for the combined impact of TCs and SLR on mangroves in Dongzhaigang,China can enrich the method system of mangrove risk assessment and provide references for scientific management.
基金supported by the Joint Foundation of the Ministry of Education(Grant No.8091B022123)the Water Science and Technology Project of Jiangsu Province(Grant No.2022023)+1 种基金the Project of the Key Technologies of Port Engineering Construction under Medium and Long Period Wave Conditions(Grant No.ZJ2015-1)the Open Funding from the Key Laboratory of Port,Waterway and Sedimentation Engineering of the Ministry of Communications in 2023(Grant No.Yk223001-3).
文摘Coastal management in China is confronted with an urgent choice between natural restoration and maintenance of existing seawalls and reclaimed land for economic development.A key criterion for making this decision is the resilience to coastal flooding,which depends on the ability to predict tidal level.Tidal duration asymmetry(TDA)is a key parameter in determination of the arrival and duration of flood tides.This study selected the western inner shelf of the Yellow Sea(WYS)as the study area and investigated the responses of TDA to different shoreline configurations and relative sea level rise.The responses of TDA to shoreline reconstruction yielded spatial variability locally and remotely.In the nearshore area,the responses of TDA to the complex ocean environment mainly originated from the combined functions of reflection,bottom friction,and advection,which controlled the energy transfer from M2 or S2 constituents to their overtides or compound tides.The sensitivity of TDA to coastline typologies was not limited to coastal waters but could stretch over the entire inner shelf.The vulnerability of tidal responses was due to the displacement of the M2 amphidrome of the Kelvin wave on the WYS,which in turn changed tidal energy fluxes over the regime.The relative sea level rise could intensify the feedback of TDA to seawalls and land reclamation.
文摘AIM:To describe the gonioscopic profile and intraocular pressure(IOP)in primary angle-closure(PAC)disease in patients presenting to a tertiary eye care network in India.METHODS:A cross-sectional hospital-based study that included 31484 new patients presenting between 2011 and 2021.Patients with a clinical diagnosis of PAC/suspect/glaucoma were included.The data was collected from an electronic medical record system.RESULTS:PAC glaucoma(PACG)(47.55%)was the most common diagnosis followed by PAC(39.49%)and PAC suspect(PACS;12.96%).Female preponderance(54.6%)was noted with higher mean age at presentation among males(P<0.0001).PACS and PAC showed the highest prevalence in 6th decade but PACG was higher at 7th decade.The probability of angle opening was 95.93%,90.32%and 63.36%in PACS,PAC and PACG eyes respectively post peripheral iridotomy(PI).Plateau iris syndrome(PIS)was noted in 252 eyes and all showed post dilated rise of IOP.A post dilated IOP rise was also noted with 8.86%,33.95%and 57.19%eyes with PACS,PAC and PACG respectively with IOP rise between 6-8 mm Hg across the disease spectrum.CONCLUSION:The superior quadrant is the narrowest angle and difficult to open with indentation and post PI.The probability of angle opening is less in PIS especially the complete variety along with post dilated IOP rise.The post dilated IOP rise in angle closure eyes warrants a careful dilatation,especially with PIS.
基金The Open Fund of the Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences,under contract No.MGE2022KG11。
文摘The Caroline Plate is located among the Pacific Plate,the Philippine Sea Plate,and the India Australia Plate,and plays a key role in controlling the spreading direction of the Philippine Sea Plate.The Caroline Submarine Plateau(or Caroline Ridge)and the Eauripik Rise on the south formed a remarkable T-shaped large igneous rock province,which covered the northern boundary between the Caroline Plate and the Pacific Plate.However,relationship between these tectonic units and magma evolution remains unclear.Based on magnetic data from the Earth Magnetic Anomaly Grid(2-arc-minute resolution)(V2),the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique was used to study the boundary of the Caroline Plate.Results show that the northern boundary is a transform fault that runs 1400 km long in approximately 28 km wide along the N8°in E-W direction.The eastern boundary is an NNW-SSE trending fault zone and subduction zone with a width of tens to hundreds of kilometers;and the north of N4°is a fracture zone of dense faults.The southeastern boundary may be the Lyra Trough.The area between the southwestern part of the Caroline Plate and the Ayu Trough is occupied by a wide shear zone up to 100 km wide in nearly S-N trending in general.The Eauripik transform fault(ETF)in the center of the Caroline Plate and the fault zones in the east and west basins are mostly semi-parallel sinistral NNW-SSE–trending faults,which together with the eastern boundary Mussau Trench(MT)sinistral fault,the northern Caroline transform fault(CTF),and the southern shear zone of the western boundary,indicates the sinistral characteristics of the Caroline Plate.The Caroline hotspot erupted in the Pacific Plate near the CTF and formed the west Caroline Ridge,and then joined with the Caroline transform fault at the N8°.A large amount of magma erupted along the CTF,by which the east Caroline Ridge was formed.At the same time,a large amount of magma developed southward via the eastern branch of the ETF,forming the northern segment of the Eauripik Rise.Therefore,the magmatic activity of the T-shaped large igneous province is obviously related to the fault structure of the boundary faults between the Caroline Plate and Pacific Plate,and the active faults within the Caroline Plate.
基金supported by the National Natural Science Foundation of China(42293261)projects of the China Geological Survey(DD20230091,DD20189506,DD20211301)+1 种基金the 2024 Qinhuangdao City level Science and Technology Plan Self-Financing Project(Research on data processing methods for wave buoys in nearshore waters)the project of Hebei University of Environmental Engineering(GCZ202301)。
文摘The future inundation by storm surge on coastal areas are currently ill-defined.With increasing global sealevel due to climate change,the coastal flooding by storm surge is more and more frequently,especially in coastal lowland with land subsidence.Therefore,the risk assessment of such inundation for these areas is of great significance for the sustainable socio-economic development.In this paper,the authors use Elevation-Area method and Regional Ocean Model System(ROMS)model to assess the risk of the inundation of Bohai Bay by storm surge.The simulation results of Elevation-Area method show that either a 50-year or 100-year storm surge can inundate coastal areas exceeding 8000 km^(2);the numerical simulation results based on hydrodynamics,considering ground friction and duration of the storm surge high water,show that a 50-year or 100-year storm surge can only inundate an area of over 2000 km^(2),which is far less than 8000 km^(2);while,when taking into account the land subsidence and sea level rise,the very inundation range will rapidly increase by 2050 and 2100.The storm surge will greatly impact the coastal area within about 10-30 km of the Bohai Bay,in where almost all major coastal projects are located.The prompt response to flood disaster due to storm surge is urgently needed,for which five suggestions have been proposed based on the geological background of Bohai Bay.This study may offer insight into the development of the response and adaptive plans for flooding disasters caused by storm surge.
基金Supported by National Key R&D Program of China (Grant No.2018YFB2000702)National Natural Science Foundation of China (Grant No.52075262)Fok Ying-Tong Education Foundation of China (Grant No.171044)。
文摘A winding system is a time-varying system that considers complex nonlinear characteristics,and how to control the stability of the winding tension during the winding process is the primary problem that has hindered development in this field in recent years.Many nonlinear factors affect the tension in the winding process,such as friction,structured uncertainties,unstructured uncertainties,and external interference.These terms severely restrict the tension tracking performance.Existing tension control strategies are mainly based on the composite control of the tension and speed loops,and previous studies involve complex decoupling operations.Owing to the large number of calculations required for this method,it is inconvenient for practical engineering applications.To simplify the tension generation mechanism and the influence of the nonlinear characteristics of the winding system,a simpler nonlinear dynamic model of the winding tension was established.An adaptive method was applied to update the feedback gain of the continuous robust integral of the sign of the error(RISE).Furthermore,an extended state observer was used to estimate modeling errors and external disturbances.The model disturbance term can be compensated for in the designed RISE controller.The asymptotic stability of the system was proven according to the Lyapunov stability theory.Finally,a comparative analysis of the proposed nonlinear controller and several other controllers was performed.The results indicated that the control of the winding tension was significantly enhanced.
文摘2023 will be remembered as a critical juncture in the third decade of the 21st century.Significant changes have been witnessed in the international landscape,underpinned by the law of history that great powers rise and inevitably fall.It could be deemed a year of coup d'état for Africa,a year of conflict for Eastern Europe,a year of crisis for the Middle East,and a year of diplomacy for major powers.Countries around the globe are concerned about how the world and times will evolve as they pursue their security and development.As a responsible major country,China has proposed its solutions for enhancing security,development,and civilizations worldwide.It applies an approach that removes barriers and increases connectivity,turns shocks into driving forces,accumulates experience from setbacks,and arouses confidence in today's unsettled world.While promoting world peace and development,China also needs to pay close heed to the changes that are taking place.Only by identifying the crux of its problems and stopping the spread of risks can China ensure a dynamic equilibrium between security and development.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘As the global temperature continues to increase, the sea level continues to rise at a rapid rate that has never been seen before. This becomes an issue for many facets of life but one of the most impacted is the transportation infrastructure. Many people living in low elevation coastal areas can become trapped by flooding with no way in or out. With Delaware being a coastal state, this would affect a large portion of the population and will have detrimental effects over time if nothing is done to combat sea level rise. The issue with sea level rise in transportation is that once the roads become flooded, they become virtually unusable and detour routes would be needed. If all the roads in a coastal area were to be affected by sea level rise, the options for detours would become limited. This article looks at direct solutions to combat sea level rise and indirect solutions that would specifically help transportation infrastructure and evacuation routes in Delaware. There is not one solution that can fix every problem, so many solutions are laid out to see what is applicable to each affected area. Some solutions include defense structures that would be put close to the coast, raising the elevation of vulnerable roads throughout the state and including pumping stations to drain the water on the surface of the road. With an understanding of all these solutions around the world, the ultimate conclusion came in the form of a six-step plan that Delaware should take in order to best design against sea level rise in these coastal areas.
基金Supported by the National Natural Science Foundation of China (20821004 20990224) the National Basic Research Program of China (2007CB714300)
文摘The rising behavior of single bubbles has been investigated in six systems with different viscosity and Morton number(Mo) from 3.21×10-11 to 163. Bubbles with maximum equivalent diameter of up to 16 mm were investigated. The bubble Reynolds number(Re) ranged from 0.02 to 1200 covering 3 regimes in which two func-tions are obtained relating the drag coefficient,CD,with Re and Mo. It has been found that in the high Reynolds number regime the drag coefficient increases until the Reynolds number of about 1200. The classic expression of Jamialahmadi(1994) is improved and extended to high viscosity liquids. A new relationship for the aspect ratio of deformed bubbles in terms of Re,the Etvs number and Mo,applicable to a wide range of system properties,espe-cially in high viscosity liquids,is also suggested.
基金Supported by the National Natural Science Foundation of China(21276132)the Transformation Project of Scientific and Technological Achievements of Qingdao(16-6-2-50-nsh)
文摘Gas–liquid multiphase flow is a significant phenomenon in chemical processes. The rising behaviors of single bubbles in the quiescent liquids have been investigated but the internal flow patterns and deformation rules of bubbles, which influence the mass transfer efficiency to a large extent, have received much less attention. In this paper, the volume of fluid method was used to calculate the bubble shapes, pressure, velocity distributions,and the flow patterns inside the bubbles. The rising behavior of the bubbles with four different initial diameters,i.e., 3 mm, 5 mm, 7 mm and 9 mm was investigated in four various liquids including water, 61.23% glycerol,86.73% glycerol and 100% glycerol. The results show that the liquid properties and bubble initial diameters have great impacts on bubble shapes. Moreover, flow patterns inside the bubbles with different initial diameters were analyzed and classified into three types under the condition of different bubble shapes. Three correlations for predicting the maximum internal circulation inside the bubbles in 86.73% glycerol were presented and the R-square values were all bigger than 0.98. Through analyzing the pressure and velocity distributions around the bubbles, four rules of bubble deformation were also obtained to explain and predict the shapes.
基金supported by the Key Projector of Chinese Academy of Science (No. KZCX-YW-330)the National Science Fund Fostering Talents in Basic Research to Glaciology and Geocryology (Grant No. J0630966)
文摘Two methods, rapidly depressurizing to 0.1 MPa at a constant temperature and rising temperature under equilibrium P, T conditions, were used to study the dissociation of pure CH4 hydrate formed below the ice point. At a constant temperature with rapidly depressurizing to 0.1 MPa, CH4 hydrate dissociated rapidly at initial dissociation and then the dissociation rate gradually decreased. However, the dissociation of CH4 hydrate at temperatures of 261 to 266 K was much faster than that at temperatures of 269 to 272 K, indicating its anomalous preservation. Under an equilibrium P, T conditions, rising temperature had extensively controlling impact on dissociation of CH4 hydrate at equilibrium pressures of 2.31, 2.16 and 1.96 MPa. In this study, we report the effect of pressure on CH4 hydrate dissociation, especially the effect of equilibrium pressure on dissociation at various melting temperatures. And we find that the ice particles size of CH4 hydrate formed may dominant the CH4 hydrate dissociation. Dissociation of CH4 hydrate formed from ice particles of smaller than 250 μm may not have an anomalous preservation below the ice point, while particles larger than 250 μm may have more extensive anomalous preservation.